BERA Price: $3.72 (+1.18%)

Contract

0x000000f6fAeDA8f7bfa1a8589B4b6e2d71c37592

Overview

BERA Balance

Berachain LogoBerachain LogoBerachain Logo0 BERA

BERA Value

$0.00

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To
Deposit For12389722025-02-17 3:26:0865 days ago1739762768IN
0x000000f6...d71c37592
3 BERA0.000000070.00146739
Deposit For8595362025-02-08 8:18:1474 days ago1739002694IN
0x000000f6...d71c37592
1 BERA0.000000060.00093759
Deposit For8113672025-02-07 6:32:4675 days ago1738909966IN
0x000000f6...d71c37592
0.01 BERA00.00000001
Grant Role8087282025-02-07 5:07:3875 days ago1738904858IN
0x000000f6...d71c37592
0 BERA00.00000001

Latest 4 internal transactions

Parent Transaction Hash Block From To
12389722025-02-17 3:26:0865 days ago1739762768
0x000000f6...d71c37592
3 BERA
8595362025-02-08 8:18:1474 days ago1739002694
0x000000f6...d71c37592
1 BERA
8113672025-02-07 6:32:4675 days ago1738909966
0x000000f6...d71c37592
0.01 BERA
8087202025-02-07 5:07:2375 days ago1738904843  Contract Creation0 BERA
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
VerifyingSingletonPaymaster

Compiler Version
v0.8.20+commit.a1b79de6

Optimization Enabled:
Yes with 200 runs

Other Settings:
default evmVersion
File 1 of 20 : VerifyingSingletonPaymaster.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.20;

/* solhint-disable reason-string */
/* solhint-disable no-inline-assembly */
import {ECDSA} from '@openzeppelin/contracts/utils/cryptography/ECDSA.sol';
import {MessageHashUtils} from '@openzeppelin/contracts/utils/cryptography/MessageHashUtils.sol';
import {ReentrancyGuard} from '@openzeppelin/contracts/utils/ReentrancyGuard.sol';
import {UserOperation, UserOperationLib} from '@account-abstraction/contracts/interfaces/UserOperation.sol';
import {BasePaymaster} from '../base/BasePaymaster.sol';
import {IEntryPoint} from '@account-abstraction/contracts/interfaces/IEntryPoint.sol';
import {_packValidationData} from '@account-abstraction/contracts/core/Helpers.sol';

/**
 * @title A sample paymaster that uses external service to decide whether to pay for the UserOp.
 * @dev The paymaster trusts an external signer to sign the transaction.
 * The calling user must pass the UserOp to that external signer first, which performs whatever
 * off-chain verification before signing the UserOp.
 * @notice That this signature is NOT a replacement for wallet signature:
 *  - The paymaster signs to agree to PAY for GAS.
 *  - The wallet signs to prove identity and wallet ownership.
 */
contract VerifyingSingletonPaymaster is BasePaymaster, ReentrancyGuard {
    using ECDSA for bytes32;
    using MessageHashUtils for bytes32;
    using UserOperationLib for UserOperation;

    bytes32 public constant SIGNER = keccak256('SIGNER');
    bytes32 public constant ADMIN = keccak256('ADMIN');

    uint256 private constant PAYMASTER_ID_OFFSET = 20;

    uint256 private constant VALID_PND_OFFSET = 40;

    uint256 private constant SIGNATURE_OFFSET = 104;

    // Gas used in EntryPoint._handlePostOp() method (including this#postOp() call)
    uint256 private unaccountedEPGasOverhead;
    mapping(address => uint256) public paymasterIdBalances;

    event EPGasOverheadChanged(uint256 indexed _oldValue, uint256 indexed _newValue);

    event GasDeposited(address indexed _paymasterId, uint256 indexed _value);
    event GasWithdrawn(address indexed _paymasterId, address indexed _to, uint256 indexed _value);
    event GasBalanceDeducted(address indexed _paymasterId, uint256 indexed _charge);

    error EntryPointCannotBeZero();
    error PaymasterIdCannotBeZero();
    error DepositCanNotBeZero();
    error CanNotWithdrawToZeroAddress();
    error InsufficientBalance(uint256 amount, uint256 currentBalance);
    error InvalidPaymasterSignatureLength(uint256 sigLength);
    error UserDepositForInstead();

    constructor(IEntryPoint _entryPoint, address _admin) payable BasePaymaster(_entryPoint) {
        if (address(_entryPoint) == address(0)) revert EntryPointCannotBeZero();
        _grantRole(DEFAULT_ADMIN_ROLE, _admin);
        // 7936
        unaccountedEPGasOverhead = 12000;
    }

    /**
     * @dev Add a deposit for this paymaster and given paymasterId (Dapp Depositor address), used for paying for transaction fees
     * @param paymasterId dapp identifier for which deposit is being made
     */
    function depositFor(address paymasterId) external payable nonReentrant {
        if (paymasterId == address(0)) revert PaymasterIdCannotBeZero();
        if (msg.value == 0) revert DepositCanNotBeZero();
        paymasterIdBalances[paymasterId] = paymasterIdBalances[paymasterId] + msg.value;
        entryPoint.depositTo{value: msg.value}(address(this));
        emit GasDeposited(paymasterId, msg.value);
    }

    /**
     * @dev get the current deposit for paymasterId (Dapp Depositor address)
     * @param paymasterId dapp identifier
     */
    function getBalance(address paymasterId) external view returns (uint256 balance) {
        balance = paymasterIdBalances[paymasterId];
    }

    /**
     @dev Override the default implementation.
     */
    function deposit() public payable virtual override {
        revert UserDepositForInstead();
    }

    /**
     * @dev Withdraws the specified amount of gas tokens from the paymaster's balance and transfers them to the specified address.
     * @param withdrawAddress The address to which the gas tokens should be transferred.
     * @param amount The amount of gas tokens to withdraw.
     */
    function withdrawTo(
        address payable withdrawAddress,
        uint256 amount
    ) public override nonReentrant {
        if (withdrawAddress == address(0)) revert CanNotWithdrawToZeroAddress();
        uint256 currentBalance = paymasterIdBalances[msg.sender];
        if (amount > currentBalance) revert InsufficientBalance(amount, currentBalance);
        paymasterIdBalances[msg.sender] = paymasterIdBalances[msg.sender] - amount;
        entryPoint.withdrawTo(withdrawAddress, amount);
        emit GasWithdrawn(msg.sender, withdrawAddress, amount);
    }

    function setUnaccountedEPGasOverhead(uint256 value) external onlyRole(ADMIN) {
        uint256 oldValue = unaccountedEPGasOverhead;
        unaccountedEPGasOverhead = value;
        emit EPGasOverheadChanged(oldValue, value);
    }

    /**
     * @dev This method is called by the off-chain service, to sign the request.
     * It is called on-chain from the validatePaymasterUserOp, to validate the signature.
     * @notice That this signature covers all fields of the UserOperation, except the "paymasterAndData",
     * which will carry the signature itself.
     * @return hash we're going to sign off-chain (and validate on-chain)
     */
    function getHash(
        UserOperation calldata userOp,
        address paymasterId,
        uint48 validUntil,
        uint48 validAfter
    ) public view returns (bytes32) {
        //can't use userOp.hash(), since it contains also the paymasterAndData itself.
        address sender = userOp.getSender();
        return
            keccak256(
                bytes.concat(
                    abi.encode(
                        sender,
                        userOp.nonce,
                        keccak256(userOp.initCode),
                        keccak256(userOp.callData),
                        userOp.callGasLimit,
                        userOp.verificationGasLimit,
                        userOp.preVerificationGas,
                        userOp.maxFeePerGas,
                        userOp.maxPriorityFeePerGas,
                        block.chainid,
                        address(this)
                    ),
                    abi.encode(paymasterId, validUntil, validAfter)
                )
            );
    }

    /**
     * @dev Verify that an external signer signed the paymaster data of a user operation.
     * The paymaster data is expected to be the paymaster and a signature over the entire request parameters.
     * @param userOp The UserOperation struct that represents the current user operation.
     * userOpHash The hash of the UserOperation struct.
     * @param requiredPreFund The required amount of pre-funding for the paymaster.
     * @return context A context string returned by the entry point after successful validation.
     * @return validationData An integer returned by the entry point after successful validation.
     */
    function _validatePaymasterUserOp(
        UserOperation calldata userOp,
        bytes32 /*userOpHash*/,
        uint256 requiredPreFund
    ) internal view override returns (bytes memory context, uint256 validationData) {
        (
            address paymasterId,
            uint48 validUntil,
            uint48 validAfter,
            bytes calldata signature
        ) = parsePaymasterAndData(userOp.paymasterAndData);
        bytes32 hash = getHash(userOp, paymasterId, validUntil, validAfter);
        require(signature.length == 65, 'Paymaster: invalid signature length in paymasterAndData');
        //don't revert on signature failure: return SIG_VALIDATION_FAILED
        if (!hasRole(SIGNER, hash.toEthSignedMessageHash().recover(signature))) {
            // empty context and sigFailed with time range provided
            return ('', _packValidationData(true, validUntil, validAfter));
        }
        if (requiredPreFund > paymasterIdBalances[paymasterId])
            revert InsufficientBalance(requiredPreFund, paymasterIdBalances[paymasterId]);
        return (
            abi.encode(paymasterId, userOp.maxFeePerGas, userOp.maxPriorityFeePerGas),
            _packValidationData(false, validUntil, validAfter)
        );
    }

    function parsePaymasterAndData(
        bytes calldata paymasterAndData
    )
        public
        pure
        returns (
            address paymasterId,
            uint48 validUntil,
            uint48 validAfter,
            bytes calldata signature
        )
    {
        paymasterId = address(bytes20(paymasterAndData[PAYMASTER_ID_OFFSET:VALID_PND_OFFSET]));
        (validUntil, validAfter) = abi.decode(
            paymasterAndData[VALID_PND_OFFSET:SIGNATURE_OFFSET],
            (uint48, uint48)
        );
        signature = paymasterAndData[SIGNATURE_OFFSET:];
    }

    function getGasPrice(
        uint256 maxFeePerGas,
        uint256 maxPriorityFeePerGas
    ) internal view returns (uint256) {
        if (maxFeePerGas == maxPriorityFeePerGas) {
            //legacy mode (for networks that don't support basefee opcode)
            return maxFeePerGas;
        }
        return min(maxFeePerGas, maxPriorityFeePerGas + block.basefee);
    }

    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Executes the paymaster's payment conditions
     * mode tells whether the op succeeded, reverted, or if the op succeeded but cause the postOp to revert
     * @param context payment conditions signed by the paymaster in `validatePaymasterUserOp`
     * @param actualGasCost amount to be paid to the entry point in wei
     */
    function _postOp(
        PostOpMode /*mode*/,
        bytes calldata context,
        uint256 actualGasCost
    ) internal virtual override {
        (address paymasterId, uint256 maxFeePerGas, uint256 maxPriorityFeePerGas) = abi.decode(
            context,
            (address, uint256, uint256)
        );
        uint256 effectiveGasPrice = getGasPrice(maxFeePerGas, maxPriorityFeePerGas);
        uint256 balToDeduct = actualGasCost + unaccountedEPGasOverhead * effectiveGasPrice;
        paymasterIdBalances[paymasterId] = paymasterIdBalances[paymasterId] - balToDeduct;
        emit GasBalanceDeducted(paymasterId, balToDeduct);
    }
}

File 2 of 20 : Helpers.sol
// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.12;

/* solhint-disable no-inline-assembly */

/**
 * returned data from validateUserOp.
 * validateUserOp returns a uint256, with is created by `_packedValidationData` and parsed by `_parseValidationData`
 * @param aggregator - address(0) - the account validated the signature by itself.
 *              address(1) - the account failed to validate the signature.
 *              otherwise - this is an address of a signature aggregator that must be used to validate the signature.
 * @param validAfter - this UserOp is valid only after this timestamp.
 * @param validaUntil - this UserOp is valid only up to this timestamp.
 */
    struct ValidationData {
        address aggregator;
        uint48 validAfter;
        uint48 validUntil;
    }

//extract sigFailed, validAfter, validUntil.
// also convert zero validUntil to type(uint48).max
    function _parseValidationData(uint validationData) pure returns (ValidationData memory data) {
        address aggregator = address(uint160(validationData));
        uint48 validUntil = uint48(validationData >> 160);
        if (validUntil == 0) {
            validUntil = type(uint48).max;
        }
        uint48 validAfter = uint48(validationData >> (48 + 160));
        return ValidationData(aggregator, validAfter, validUntil);
    }

// intersect account and paymaster ranges.
    function _intersectTimeRange(uint256 validationData, uint256 paymasterValidationData) pure returns (ValidationData memory) {
        ValidationData memory accountValidationData = _parseValidationData(validationData);
        ValidationData memory pmValidationData = _parseValidationData(paymasterValidationData);
        address aggregator = accountValidationData.aggregator;
        if (aggregator == address(0)) {
            aggregator = pmValidationData.aggregator;
        }
        uint48 validAfter = accountValidationData.validAfter;
        uint48 validUntil = accountValidationData.validUntil;
        uint48 pmValidAfter = pmValidationData.validAfter;
        uint48 pmValidUntil = pmValidationData.validUntil;

        if (validAfter < pmValidAfter) validAfter = pmValidAfter;
        if (validUntil > pmValidUntil) validUntil = pmValidUntil;
        return ValidationData(aggregator, validAfter, validUntil);
    }

/**
 * helper to pack the return value for validateUserOp
 * @param data - the ValidationData to pack
 */
    function _packValidationData(ValidationData memory data) pure returns (uint256) {
        return uint160(data.aggregator) | (uint256(data.validUntil) << 160) | (uint256(data.validAfter) << (160 + 48));
    }

/**
 * helper to pack the return value for validateUserOp, when not using an aggregator
 * @param sigFailed - true for signature failure, false for success
 * @param validUntil last timestamp this UserOperation is valid (or zero for infinite)
 * @param validAfter first timestamp this UserOperation is valid
 */
    function _packValidationData(bool sigFailed, uint48 validUntil, uint48 validAfter) pure returns (uint256) {
        return (sigFailed ? 1 : 0) | (uint256(validUntil) << 160) | (uint256(validAfter) << (160 + 48));
    }

/**
 * keccak function over calldata.
 * @dev copy calldata into memory, do keccak and drop allocated memory. Strangely, this is more efficient than letting solidity do it.
 */
    function calldataKeccak(bytes calldata data) pure returns (bytes32 ret) {
        assembly {
            let mem := mload(0x40)
            let len := data.length
            calldatacopy(mem, data.offset, len)
            ret := keccak256(mem, len)
        }
    }

File 3 of 20 : IAggregator.sol
// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.12;

import "./UserOperation.sol";

/**
 * Aggregated Signatures validator.
 */
interface IAggregator {

    /**
     * validate aggregated signature.
     * revert if the aggregated signature does not match the given list of operations.
     */
    function validateSignatures(UserOperation[] calldata userOps, bytes calldata signature) external view;

    /**
     * validate signature of a single userOp
     * This method is should be called by bundler after EntryPoint.simulateValidation() returns (reverts) with ValidationResultWithAggregation
     * First it validates the signature over the userOp. Then it returns data to be used when creating the handleOps.
     * @param userOp the userOperation received from the user.
     * @return sigForUserOp the value to put into the signature field of the userOp when calling handleOps.
     *    (usually empty, unless account and aggregator support some kind of "multisig"
     */
    function validateUserOpSignature(UserOperation calldata userOp)
    external view returns (bytes memory sigForUserOp);

    /**
     * aggregate multiple signatures into a single value.
     * This method is called off-chain to calculate the signature to pass with handleOps()
     * bundler MAY use optimized custom code perform this aggregation
     * @param userOps array of UserOperations to collect the signatures from.
     * @return aggregatedSignature the aggregated signature
     */
    function aggregateSignatures(UserOperation[] calldata userOps) external view returns (bytes memory aggregatedSignature);
}

File 4 of 20 : IEntryPoint.sol
/**
 ** Account-Abstraction (EIP-4337) singleton EntryPoint implementation.
 ** Only one instance required on each chain.
 **/
// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.12;

/* solhint-disable avoid-low-level-calls */
/* solhint-disable no-inline-assembly */
/* solhint-disable reason-string */

import "./UserOperation.sol";
import "./IStakeManager.sol";
import "./IAggregator.sol";
import "./INonceManager.sol";

interface IEntryPoint is IStakeManager, INonceManager {

    /***
     * An event emitted after each successful request
     * @param userOpHash - unique identifier for the request (hash its entire content, except signature).
     * @param sender - the account that generates this request.
     * @param paymaster - if non-null, the paymaster that pays for this request.
     * @param nonce - the nonce value from the request.
     * @param success - true if the sender transaction succeeded, false if reverted.
     * @param actualGasCost - actual amount paid (by account or paymaster) for this UserOperation.
     * @param actualGasUsed - total gas used by this UserOperation (including preVerification, creation, validation and execution).
     */
    event UserOperationEvent(bytes32 indexed userOpHash, address indexed sender, address indexed paymaster, uint256 nonce, bool success, uint256 actualGasCost, uint256 actualGasUsed);

    /**
     * account "sender" was deployed.
     * @param userOpHash the userOp that deployed this account. UserOperationEvent will follow.
     * @param sender the account that is deployed
     * @param factory the factory used to deploy this account (in the initCode)
     * @param paymaster the paymaster used by this UserOp
     */
    event AccountDeployed(bytes32 indexed userOpHash, address indexed sender, address factory, address paymaster);

    /**
     * An event emitted if the UserOperation "callData" reverted with non-zero length
     * @param userOpHash the request unique identifier.
     * @param sender the sender of this request
     * @param nonce the nonce used in the request
     * @param revertReason - the return bytes from the (reverted) call to "callData".
     */
    event UserOperationRevertReason(bytes32 indexed userOpHash, address indexed sender, uint256 nonce, bytes revertReason);

    /**
     * an event emitted by handleOps(), before starting the execution loop.
     * any event emitted before this event, is part of the validation.
     */
    event BeforeExecution();

    /**
     * signature aggregator used by the following UserOperationEvents within this bundle.
     */
    event SignatureAggregatorChanged(address indexed aggregator);

    /**
     * a custom revert error of handleOps, to identify the offending op.
     *  NOTE: if simulateValidation passes successfully, there should be no reason for handleOps to fail on it.
     *  @param opIndex - index into the array of ops to the failed one (in simulateValidation, this is always zero)
     *  @param reason - revert reason
     *      The string starts with a unique code "AAmn", where "m" is "1" for factory, "2" for account and "3" for paymaster issues,
     *      so a failure can be attributed to the correct entity.
     *   Should be caught in off-chain handleOps simulation and not happen on-chain.
     *   Useful for mitigating DoS attempts against batchers or for troubleshooting of factory/account/paymaster reverts.
     */
    error FailedOp(uint256 opIndex, string reason);

    /**
     * error case when a signature aggregator fails to verify the aggregated signature it had created.
     */
    error SignatureValidationFailed(address aggregator);

    /**
     * Successful result from simulateValidation.
     * @param returnInfo gas and time-range returned values
     * @param senderInfo stake information about the sender
     * @param factoryInfo stake information about the factory (if any)
     * @param paymasterInfo stake information about the paymaster (if any)
     */
    error ValidationResult(ReturnInfo returnInfo,
        StakeInfo senderInfo, StakeInfo factoryInfo, StakeInfo paymasterInfo);

    /**
     * Successful result from simulateValidation, if the account returns a signature aggregator
     * @param returnInfo gas and time-range returned values
     * @param senderInfo stake information about the sender
     * @param factoryInfo stake information about the factory (if any)
     * @param paymasterInfo stake information about the paymaster (if any)
     * @param aggregatorInfo signature aggregation info (if the account requires signature aggregator)
     *      bundler MUST use it to verify the signature, or reject the UserOperation
     */
    error ValidationResultWithAggregation(ReturnInfo returnInfo,
        StakeInfo senderInfo, StakeInfo factoryInfo, StakeInfo paymasterInfo,
        AggregatorStakeInfo aggregatorInfo);

    /**
     * return value of getSenderAddress
     */
    error SenderAddressResult(address sender);

    /**
     * return value of simulateHandleOp
     */
    error ExecutionResult(uint256 preOpGas, uint256 paid, uint48 validAfter, uint48 validUntil, bool targetSuccess, bytes targetResult);

    //UserOps handled, per aggregator
    struct UserOpsPerAggregator {
        UserOperation[] userOps;

        // aggregator address
        IAggregator aggregator;
        // aggregated signature
        bytes signature;
    }

    /**
     * Execute a batch of UserOperation.
     * no signature aggregator is used.
     * if any account requires an aggregator (that is, it returned an aggregator when
     * performing simulateValidation), then handleAggregatedOps() must be used instead.
     * @param ops the operations to execute
     * @param beneficiary the address to receive the fees
     */
    function handleOps(UserOperation[] calldata ops, address payable beneficiary) external;

    /**
     * Execute a batch of UserOperation with Aggregators
     * @param opsPerAggregator the operations to execute, grouped by aggregator (or address(0) for no-aggregator accounts)
     * @param beneficiary the address to receive the fees
     */
    function handleAggregatedOps(
        UserOpsPerAggregator[] calldata opsPerAggregator,
        address payable beneficiary
    ) external;

    /**
     * generate a request Id - unique identifier for this request.
     * the request ID is a hash over the content of the userOp (except the signature), the entrypoint and the chainid.
     */
    function getUserOpHash(UserOperation calldata userOp) external view returns (bytes32);

    /**
     * Simulate a call to account.validateUserOp and paymaster.validatePaymasterUserOp.
     * @dev this method always revert. Successful result is ValidationResult error. other errors are failures.
     * @dev The node must also verify it doesn't use banned opcodes, and that it doesn't reference storage outside the account's data.
     * @param userOp the user operation to validate.
     */
    function simulateValidation(UserOperation calldata userOp) external;

    /**
     * gas and return values during simulation
     * @param preOpGas the gas used for validation (including preValidationGas)
     * @param prefund the required prefund for this operation
     * @param sigFailed validateUserOp's (or paymaster's) signature check failed
     * @param validAfter - first timestamp this UserOp is valid (merging account and paymaster time-range)
     * @param validUntil - last timestamp this UserOp is valid (merging account and paymaster time-range)
     * @param paymasterContext returned by validatePaymasterUserOp (to be passed into postOp)
     */
    struct ReturnInfo {
        uint256 preOpGas;
        uint256 prefund;
        bool sigFailed;
        uint48 validAfter;
        uint48 validUntil;
        bytes paymasterContext;
    }

    /**
     * returned aggregated signature info.
     * the aggregator returned by the account, and its current stake.
     */
    struct AggregatorStakeInfo {
        address aggregator;
        StakeInfo stakeInfo;
    }

    /**
     * Get counterfactual sender address.
     *  Calculate the sender contract address that will be generated by the initCode and salt in the UserOperation.
     * this method always revert, and returns the address in SenderAddressResult error
     * @param initCode the constructor code to be passed into the UserOperation.
     */
    function getSenderAddress(bytes memory initCode) external;


    /**
     * simulate full execution of a UserOperation (including both validation and target execution)
     * this method will always revert with "ExecutionResult".
     * it performs full validation of the UserOperation, but ignores signature error.
     * an optional target address is called after the userop succeeds, and its value is returned
     * (before the entire call is reverted)
     * Note that in order to collect the the success/failure of the target call, it must be executed
     * with trace enabled to track the emitted events.
     * @param op the UserOperation to simulate
     * @param target if nonzero, a target address to call after userop simulation. If called, the targetSuccess and targetResult
     *        are set to the return from that call.
     * @param targetCallData callData to pass to target address
     */
    function simulateHandleOp(UserOperation calldata op, address target, bytes calldata targetCallData) external;
}

File 5 of 20 : INonceManager.sol
// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.12;

interface INonceManager {

    /**
     * Return the next nonce for this sender.
     * Within a given key, the nonce values are sequenced (starting with zero, and incremented by one on each userop)
     * But UserOp with different keys can come with arbitrary order.
     *
     * @param sender the account address
     * @param key the high 192 bit of the nonce
     * @return nonce a full nonce to pass for next UserOp with this sender.
     */
    function getNonce(address sender, uint192 key)
    external view returns (uint256 nonce);

    /**
     * Manually increment the nonce of the sender.
     * This method is exposed just for completeness..
     * Account does NOT need to call it, neither during validation, nor elsewhere,
     * as the EntryPoint will update the nonce regardless.
     * Possible use-case is call it with various keys to "initialize" their nonces to one, so that future
     * UserOperations will not pay extra for the first transaction with a given key.
     */
    function incrementNonce(uint192 key) external;
}

File 6 of 20 : IPaymaster.sol
// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.12;

import "./UserOperation.sol";

/**
 * the interface exposed by a paymaster contract, who agrees to pay the gas for user's operations.
 * a paymaster must hold a stake to cover the required entrypoint stake and also the gas for the transaction.
 */
interface IPaymaster {

    enum PostOpMode {
        opSucceeded, // user op succeeded
        opReverted, // user op reverted. still has to pay for gas.
        postOpReverted //user op succeeded, but caused postOp to revert. Now it's a 2nd call, after user's op was deliberately reverted.
    }

    /**
     * payment validation: check if paymaster agrees to pay.
     * Must verify sender is the entryPoint.
     * Revert to reject this request.
     * Note that bundlers will reject this method if it changes the state, unless the paymaster is trusted (whitelisted)
     * The paymaster pre-pays using its deposit, and receive back a refund after the postOp method returns.
     * @param userOp the user operation
     * @param userOpHash hash of the user's request data.
     * @param maxCost the maximum cost of this transaction (based on maximum gas and gas price from userOp)
     * @return context value to send to a postOp
     *      zero length to signify postOp is not required.
     * @return validationData signature and time-range of this operation, encoded the same as the return value of validateUserOperation
     *      <20-byte> sigAuthorizer - 0 for valid signature, 1 to mark signature failure,
     *         otherwise, an address of an "authorizer" contract.
     *      <6-byte> validUntil - last timestamp this operation is valid. 0 for "indefinite"
     *      <6-byte> validAfter - first timestamp this operation is valid
     *      Note that the validation code cannot use block.timestamp (or block.number) directly.
     */
    function validatePaymasterUserOp(UserOperation calldata userOp, bytes32 userOpHash, uint256 maxCost)
    external returns (bytes memory context, uint256 validationData);

    /**
     * post-operation handler.
     * Must verify sender is the entryPoint
     * @param mode enum with the following options:
     *      opSucceeded - user operation succeeded.
     *      opReverted  - user op reverted. still has to pay for gas.
     *      postOpReverted - user op succeeded, but caused postOp (in mode=opSucceeded) to revert.
     *                       Now this is the 2nd call, after user's op was deliberately reverted.
     * @param context - the context value returned by validatePaymasterUserOp
     * @param actualGasCost - actual gas used so far (without this postOp call).
     */
    function postOp(PostOpMode mode, bytes calldata context, uint256 actualGasCost) external;
}

File 7 of 20 : IStakeManager.sol
// SPDX-License-Identifier: GPL-3.0-only
pragma solidity ^0.8.12;

/**
 * manage deposits and stakes.
 * deposit is just a balance used to pay for UserOperations (either by a paymaster or an account)
 * stake is value locked for at least "unstakeDelay" by the staked entity.
 */
interface IStakeManager {

    event Deposited(
        address indexed account,
        uint256 totalDeposit
    );

    event Withdrawn(
        address indexed account,
        address withdrawAddress,
        uint256 amount
    );

    /// Emitted when stake or unstake delay are modified
    event StakeLocked(
        address indexed account,
        uint256 totalStaked,
        uint256 unstakeDelaySec
    );

    /// Emitted once a stake is scheduled for withdrawal
    event StakeUnlocked(
        address indexed account,
        uint256 withdrawTime
    );

    event StakeWithdrawn(
        address indexed account,
        address withdrawAddress,
        uint256 amount
    );

    /**
     * @param deposit the entity's deposit
     * @param staked true if this entity is staked.
     * @param stake actual amount of ether staked for this entity.
     * @param unstakeDelaySec minimum delay to withdraw the stake.
     * @param withdrawTime - first block timestamp where 'withdrawStake' will be callable, or zero if already locked
     * @dev sizes were chosen so that (deposit,staked, stake) fit into one cell (used during handleOps)
     *    and the rest fit into a 2nd cell.
     *    112 bit allows for 10^15 eth
     *    48 bit for full timestamp
     *    32 bit allows 150 years for unstake delay
     */
    struct DepositInfo {
        uint112 deposit;
        bool staked;
        uint112 stake;
        uint32 unstakeDelaySec;
        uint48 withdrawTime;
    }

    //API struct used by getStakeInfo and simulateValidation
    struct StakeInfo {
        uint256 stake;
        uint256 unstakeDelaySec;
    }

    /// @return info - full deposit information of given account
    function getDepositInfo(address account) external view returns (DepositInfo memory info);

    /// @return the deposit (for gas payment) of the account
    function balanceOf(address account) external view returns (uint256);

    /**
     * add to the deposit of the given account
     */
    function depositTo(address account) external payable;

    /**
     * add to the account's stake - amount and delay
     * any pending unstake is first cancelled.
     * @param _unstakeDelaySec the new lock duration before the deposit can be withdrawn.
     */
    function addStake(uint32 _unstakeDelaySec) external payable;

    /**
     * attempt to unlock the stake.
     * the value can be withdrawn (using withdrawStake) after the unstake delay.
     */
    function unlockStake() external;

    /**
     * withdraw from the (unlocked) stake.
     * must first call unlockStake and wait for the unstakeDelay to pass
     * @param withdrawAddress the address to send withdrawn value.
     */
    function withdrawStake(address payable withdrawAddress) external;

    /**
     * withdraw from the deposit.
     * @param withdrawAddress the address to send withdrawn value.
     * @param withdrawAmount the amount to withdraw.
     */
    function withdrawTo(address payable withdrawAddress, uint256 withdrawAmount) external;
}

File 8 of 20 : UserOperation.sol
// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.12;

/* solhint-disable no-inline-assembly */

import {calldataKeccak} from "../core/Helpers.sol";

/**
 * User Operation struct
 * @param sender the sender account of this request.
     * @param nonce unique value the sender uses to verify it is not a replay.
     * @param initCode if set, the account contract will be created by this constructor/
     * @param callData the method call to execute on this account.
     * @param callGasLimit the gas limit passed to the callData method call.
     * @param verificationGasLimit gas used for validateUserOp and validatePaymasterUserOp.
     * @param preVerificationGas gas not calculated by the handleOps method, but added to the gas paid. Covers batch overhead.
     * @param maxFeePerGas same as EIP-1559 gas parameter.
     * @param maxPriorityFeePerGas same as EIP-1559 gas parameter.
     * @param paymasterAndData if set, this field holds the paymaster address and paymaster-specific data. the paymaster will pay for the transaction instead of the sender.
     * @param signature sender-verified signature over the entire request, the EntryPoint address and the chain ID.
     */
    struct UserOperation {

        address sender;
        uint256 nonce;
        bytes initCode;
        bytes callData;
        uint256 callGasLimit;
        uint256 verificationGasLimit;
        uint256 preVerificationGas;
        uint256 maxFeePerGas;
        uint256 maxPriorityFeePerGas;
        bytes paymasterAndData;
        bytes signature;
    }

/**
 * Utility functions helpful when working with UserOperation structs.
 */
library UserOperationLib {

    function getSender(UserOperation calldata userOp) internal pure returns (address) {
        address data;
        //read sender from userOp, which is first userOp member (saves 800 gas...)
        assembly {data := calldataload(userOp)}
        return address(uint160(data));
    }

    //relayer/block builder might submit the TX with higher priorityFee, but the user should not
    // pay above what he signed for.
    function gasPrice(UserOperation calldata userOp) internal view returns (uint256) {
    unchecked {
        uint256 maxFeePerGas = userOp.maxFeePerGas;
        uint256 maxPriorityFeePerGas = userOp.maxPriorityFeePerGas;
        if (maxFeePerGas == maxPriorityFeePerGas) {
            //legacy mode (for networks that don't support basefee opcode)
            return maxFeePerGas;
        }
        return min(maxFeePerGas, maxPriorityFeePerGas + block.basefee);
    }
    }

    function pack(UserOperation calldata userOp) internal pure returns (bytes memory ret) {
        address sender = getSender(userOp);
        uint256 nonce = userOp.nonce;
        bytes32 hashInitCode = calldataKeccak(userOp.initCode);
        bytes32 hashCallData = calldataKeccak(userOp.callData);
        uint256 callGasLimit = userOp.callGasLimit;
        uint256 verificationGasLimit = userOp.verificationGasLimit;
        uint256 preVerificationGas = userOp.preVerificationGas;
        uint256 maxFeePerGas = userOp.maxFeePerGas;
        uint256 maxPriorityFeePerGas = userOp.maxPriorityFeePerGas;
        bytes32 hashPaymasterAndData = calldataKeccak(userOp.paymasterAndData);

        return abi.encode(
            sender, nonce,
            hashInitCode, hashCallData,
            callGasLimit, verificationGasLimit, preVerificationGas,
            maxFeePerGas, maxPriorityFeePerGas,
            hashPaymasterAndData
        );
    }

    function hash(UserOperation calldata userOp) internal pure returns (bytes32) {
        return keccak256(pack(userOp));
    }

    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }
}

File 9 of 20 : AccessControl.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/AccessControl.sol)

pragma solidity ^0.8.20;

import {IAccessControl} from "./IAccessControl.sol";
import {Context} from "../utils/Context.sol";
import {ERC165} from "../utils/introspection/ERC165.sol";

/**
 * @dev Contract module that allows children to implement role-based access
 * control mechanisms. This is a lightweight version that doesn't allow enumerating role
 * members except through off-chain means by accessing the contract event logs. Some
 * applications may benefit from on-chain enumerability, for those cases see
 * {AccessControlEnumerable}.
 *
 * Roles are referred to by their `bytes32` identifier. These should be exposed
 * in the external API and be unique. The best way to achieve this is by
 * using `public constant` hash digests:
 *
 * ```solidity
 * bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
 * ```
 *
 * Roles can be used to represent a set of permissions. To restrict access to a
 * function call, use {hasRole}:
 *
 * ```solidity
 * function foo() public {
 *     require(hasRole(MY_ROLE, msg.sender));
 *     ...
 * }
 * ```
 *
 * Roles can be granted and revoked dynamically via the {grantRole} and
 * {revokeRole} functions. Each role has an associated admin role, and only
 * accounts that have a role's admin role can call {grantRole} and {revokeRole}.
 *
 * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
 * that only accounts with this role will be able to grant or revoke other
 * roles. More complex role relationships can be created by using
 * {_setRoleAdmin}.
 *
 * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
 * grant and revoke this role. Extra precautions should be taken to secure
 * accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
 * to enforce additional security measures for this role.
 */
abstract contract AccessControl is Context, IAccessControl, ERC165 {
    struct RoleData {
        mapping(address account => bool) hasRole;
        bytes32 adminRole;
    }

    mapping(bytes32 role => RoleData) private _roles;

    bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;

    /**
     * @dev Modifier that checks that an account has a specific role. Reverts
     * with an {AccessControlUnauthorizedAccount} error including the required role.
     */
    modifier onlyRole(bytes32 role) {
        _checkRole(role);
        _;
    }

    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
    }

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) public view virtual returns (bool) {
        return _roles[role].hasRole[account];
    }

    /**
     * @dev Reverts with an {AccessControlUnauthorizedAccount} error if `_msgSender()`
     * is missing `role`. Overriding this function changes the behavior of the {onlyRole} modifier.
     */
    function _checkRole(bytes32 role) internal view virtual {
        _checkRole(role, _msgSender());
    }

    /**
     * @dev Reverts with an {AccessControlUnauthorizedAccount} error if `account`
     * is missing `role`.
     */
    function _checkRole(bytes32 role, address account) internal view virtual {
        if (!hasRole(role, account)) {
            revert AccessControlUnauthorizedAccount(account, role);
        }
    }

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) public view virtual returns (bytes32) {
        return _roles[role].adminRole;
    }

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleGranted} event.
     */
    function grantRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
        _grantRole(role, account);
    }

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleRevoked} event.
     */
    function revokeRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
        _revokeRole(role, account);
    }

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been revoked `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `callerConfirmation`.
     *
     * May emit a {RoleRevoked} event.
     */
    function renounceRole(bytes32 role, address callerConfirmation) public virtual {
        if (callerConfirmation != _msgSender()) {
            revert AccessControlBadConfirmation();
        }

        _revokeRole(role, callerConfirmation);
    }

    /**
     * @dev Sets `adminRole` as ``role``'s admin role.
     *
     * Emits a {RoleAdminChanged} event.
     */
    function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
        bytes32 previousAdminRole = getRoleAdmin(role);
        _roles[role].adminRole = adminRole;
        emit RoleAdminChanged(role, previousAdminRole, adminRole);
    }

    /**
     * @dev Attempts to grant `role` to `account` and returns a boolean indicating if `role` was granted.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleGranted} event.
     */
    function _grantRole(bytes32 role, address account) internal virtual returns (bool) {
        if (!hasRole(role, account)) {
            _roles[role].hasRole[account] = true;
            emit RoleGranted(role, account, _msgSender());
            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Attempts to revoke `role` to `account` and returns a boolean indicating if `role` was revoked.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleRevoked} event.
     */
    function _revokeRole(bytes32 role, address account) internal virtual returns (bool) {
        if (hasRole(role, account)) {
            _roles[role].hasRole[account] = false;
            emit RoleRevoked(role, account, _msgSender());
            return true;
        } else {
            return false;
        }
    }
}

File 10 of 20 : IAccessControl.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/IAccessControl.sol)

pragma solidity ^0.8.20;

/**
 * @dev External interface of AccessControl declared to support ERC165 detection.
 */
interface IAccessControl {
    /**
     * @dev The `account` is missing a role.
     */
    error AccessControlUnauthorizedAccount(address account, bytes32 neededRole);

    /**
     * @dev The caller of a function is not the expected one.
     *
     * NOTE: Don't confuse with {AccessControlUnauthorizedAccount}.
     */
    error AccessControlBadConfirmation();

    /**
     * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
     *
     * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
     * {RoleAdminChanged} not being emitted signaling this.
     */
    event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);

    /**
     * @dev Emitted when `account` is granted `role`.
     *
     * `sender` is the account that originated the contract call, an admin role
     * bearer except when using {AccessControl-_setupRole}.
     */
    event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Emitted when `account` is revoked `role`.
     *
     * `sender` is the account that originated the contract call:
     *   - if using `revokeRole`, it is the admin role bearer
     *   - if using `renounceRole`, it is the role bearer (i.e. `account`)
     */
    event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) external view returns (bool);

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {AccessControl-_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) external view returns (bytes32);

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function grantRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function revokeRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been granted `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `callerConfirmation`.
     */
    function renounceRole(bytes32 role, address callerConfirmation) external;
}

File 11 of 20 : Context.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

File 12 of 20 : ECDSA.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.20;

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS
    }

    /**
     * @dev The signature derives the `address(0)`.
     */
    error ECDSAInvalidSignature();

    /**
     * @dev The signature has an invalid length.
     */
    error ECDSAInvalidSignatureLength(uint256 length);

    /**
     * @dev The signature has an S value that is in the upper half order.
     */
    error ECDSAInvalidSignatureS(bytes32 s);

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
     * return address(0) without also returning an error description. Errors are documented using an enum (error type)
     * and a bytes32 providing additional information about the error.
     *
     * If no error is returned, then the address can be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     */
    function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError, bytes32) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            /// @solidity memory-safe-assembly
            assembly {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
     */
    function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError, bytes32) {
        unchecked {
            bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
            // We do not check for an overflow here since the shift operation results in 0 or 1.
            uint8 v = uint8((uint256(vs) >> 255) + 27);
            return tryRecover(hash, v, r, s);
        }
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function tryRecover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address, RecoverError, bytes32) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS, s);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature, bytes32(0));
        }

        return (signer, RecoverError.NoError, bytes32(0));
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
     */
    function _throwError(RecoverError error, bytes32 errorArg) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert ECDSAInvalidSignature();
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert ECDSAInvalidSignatureLength(uint256(errorArg));
        } else if (error == RecoverError.InvalidSignatureS) {
            revert ECDSAInvalidSignatureS(errorArg);
        }
    }
}

File 13 of 20 : MessageHashUtils.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MessageHashUtils.sol)

pragma solidity ^0.8.20;

import {Strings} from "../Strings.sol";

/**
 * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
 *
 * The library provides methods for generating a hash of a message that conforms to the
 * https://eips.ethereum.org/EIPS/eip-191[EIP 191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
 * specifications.
 */
library MessageHashUtils {
    /**
     * @dev Returns the keccak256 digest of an EIP-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing a bytes32 `messageHash` with
     * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
     * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
     * keccak256, although any bytes32 value can be safely used because the final digest will
     * be re-hashed.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
            mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
            digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
        }
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing an arbitrary `message` with
     * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
     * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
        return
            keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-191 signed data with version
     * `0x00` (data with intended validator).
     *
     * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
     * `validator` address. Then hashing the result.
     *
     * See {ECDSA-recover}.
     */
    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked(hex"19_00", validator, data));
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-712 typed data (EIP-191 version `0x01`).
     *
     * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
     * `\x19\x01` and hashing the result. It corresponds to the hash signed by the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
     *
     * See {ECDSA-recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
        /// @solidity memory-safe-assembly
        assembly {
            let ptr := mload(0x40)
            mstore(ptr, hex"19_01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            digest := keccak256(ptr, 0x42)
        }
    }
}

File 14 of 20 : ERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/ERC165.sol)

pragma solidity ^0.8.20;

import {IERC165} from "./IERC165.sol";

/**
 * @dev Implementation of the {IERC165} interface.
 *
 * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
 * for the additional interface id that will be supported. For example:
 *
 * ```solidity
 * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
 *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
 * }
 * ```
 */
abstract contract ERC165 is IERC165 {
    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
        return interfaceId == type(IERC165).interfaceId;
    }
}

File 15 of 20 : IERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/IERC165.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[EIP].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

File 16 of 20 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    /**
     * @dev Muldiv operation overflow.
     */
    error MathOverflowedMulDiv();

    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            return a / b;
        }

        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            if (denominator <= prod1) {
                revert MathOverflowedMulDiv();
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

File 17 of 20 : SignedMath.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}

File 18 of 20 : ReentrancyGuard.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/ReentrancyGuard.sol)

pragma solidity ^0.8.20;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant NOT_ENTERED = 1;
    uint256 private constant ENTERED = 2;

    uint256 private _status;

    /**
     * @dev Unauthorized reentrant call.
     */
    error ReentrancyGuardReentrantCall();

    constructor() {
        _status = NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be NOT_ENTERED
        if (_status == ENTERED) {
            revert ReentrancyGuardReentrantCall();
        }

        // Any calls to nonReentrant after this point will fail
        _status = ENTERED;
    }

    function _nonReentrantAfter() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = NOT_ENTERED;
    }

    /**
     * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
     * `nonReentrant` function in the call stack.
     */
    function _reentrancyGuardEntered() internal view returns (bool) {
        return _status == ENTERED;
    }
}

File 19 of 20 : Strings.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol)

pragma solidity ^0.8.20;

import {Math} from "./math/Math.sol";
import {SignedMath} from "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant HEX_DIGITS = "0123456789abcdef";
    uint8 private constant ADDRESS_LENGTH = 20;

    /**
     * @dev The `value` string doesn't fit in the specified `length`.
     */
    error StringsInsufficientHexLength(uint256 value, uint256 length);

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toStringSigned(int256 value) internal pure returns (string memory) {
        return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        uint256 localValue = value;
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = HEX_DIGITS[localValue & 0xf];
            localValue >>= 4;
        }
        if (localValue != 0) {
            revert StringsInsufficientHexLength(value, length);
        }
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
     * representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
    }
}

File 20 of 20 : BasePaymaster.sol
// SPDX-License-Identifier: GPL-3.0
pragma solidity 0.8.20;

/* solhint-disable reason-string */

import {AccessControl} from '@openzeppelin/contracts/access/AccessControl.sol';
import {IPaymaster} from '@account-abstraction/contracts/interfaces/IPaymaster.sol';
import {IEntryPoint} from '@account-abstraction/contracts/interfaces/IEntryPoint.sol';
import {UserOperation} from '@account-abstraction/contracts/interfaces/UserOperation.sol';

/**
 * Helper class for creating a paymaster.
 * provides helper methods for staking.
 * validates that the postOp is called only by the entryPoint
 */
abstract contract BasePaymaster is IPaymaster, AccessControl {
    IEntryPoint public immutable entryPoint;

    bytes32 public constant CASHIER = keccak256('CASHIER');

    constructor(IEntryPoint _entryPoint) {
        entryPoint = _entryPoint;
    }

    /// @inheritdoc IPaymaster
    function validatePaymasterUserOp(
        UserOperation calldata userOp,
        bytes32 userOpHash,
        uint256 maxCost
    ) external override returns (bytes memory context, uint256 validationData) {
        _requireFromEntryPoint();
        return _validatePaymasterUserOp(userOp, userOpHash, maxCost);
    }

    function _validatePaymasterUserOp(
        UserOperation calldata userOp,
        bytes32 userOpHash,
        uint256 maxCost
    ) internal virtual returns (bytes memory context, uint256 validationData);

    /// @inheritdoc IPaymaster
    function postOp(
        PostOpMode mode,
        bytes calldata context,
        uint256 actualGasCost
    ) external override {
        _requireFromEntryPoint();
        _postOp(mode, context, actualGasCost);
    }

    /**
     * post-operation handler.
     * (verified to be called only through the entryPoint)
     * @dev if subclass returns a non-empty context from validatePaymasterUserOp, it must also implement this method.
     * @param mode enum with the following options:
     *      opSucceeded - user operation succeeded.
     *      opReverted  - user op reverted. still has to pay for gas.
     *      postOpReverted - user op succeeded, but caused postOp (in mode=opSucceeded) to revert.
     *                       Now this is the 2nd call, after user's op was deliberately reverted.
     * @param context - the context value returned by validatePaymasterUserOp
     * @param actualGasCost - actual gas used so far (without this postOp call).
     */
    function _postOp(
        PostOpMode mode,
        bytes calldata context,
        uint256 actualGasCost
    ) internal virtual {
        (mode, context, actualGasCost); // unused params
        // subclass must override this method if validatePaymasterUserOp returns a context
        revert('must override');
    }

    /**
     * add a deposit for this paymaster, used for paying for transaction fees
     */
    function deposit() public payable virtual {
        entryPoint.depositTo{value: msg.value}(address(this));
    }

    /**
     * withdraw value from the deposit
     * @param withdrawAddress target to send to
     * @param amount to withdraw
     */
    function withdrawTo(
        address payable withdrawAddress,
        uint256 amount
    ) public virtual onlyRole(CASHIER) {
        entryPoint.withdrawTo(withdrawAddress, amount);
    }

    /**
     * add stake for this paymaster.
     * This method can also carry eth value to add to the current stake.
     * @param unstakeDelaySec - the unstake delay for this paymaster. Can only be increased.
     */
    function addStake(uint32 unstakeDelaySec) external payable onlyRole(CASHIER) {
        entryPoint.addStake{value: msg.value}(unstakeDelaySec);
    }

    /**
     * return current paymaster's deposit on the entryPoint.
     */
    function getDeposit() public view returns (uint256) {
        return entryPoint.balanceOf(address(this));
    }

    /**
     * unlock the stake, in order to withdraw it.
     * The paymaster can't serve requests once unlocked, until it calls addStake again
     */
    function unlockStake() external onlyRole(CASHIER) {
        entryPoint.unlockStake();
    }

    /**
     * withdraw the entire paymaster's stake.
     * stake must be unlocked first (and then wait for the unstakeDelay to be over)
     * @param withdrawAddress the address to send withdrawn value.
     */
    function withdrawStake(address payable withdrawAddress) external onlyRole(CASHIER) {
        entryPoint.withdrawStake(withdrawAddress);
    }

    /// validate the call is made from a valid entrypoint
    function _requireFromEntryPoint() internal virtual {
        require(msg.sender == address(entryPoint), 'Sender not EntryPoint');
    }
}

Settings
{
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "libraries": {}
}

Contract Security Audit

Contract ABI

API
[{"inputs":[{"internalType":"contract IEntryPoint","name":"_entryPoint","type":"address"},{"internalType":"address","name":"_admin","type":"address"}],"stateMutability":"payable","type":"constructor"},{"inputs":[],"name":"AccessControlBadConfirmation","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"bytes32","name":"neededRole","type":"bytes32"}],"name":"AccessControlUnauthorizedAccount","type":"error"},{"inputs":[],"name":"CanNotWithdrawToZeroAddress","type":"error"},{"inputs":[],"name":"DepositCanNotBeZero","type":"error"},{"inputs":[],"name":"ECDSAInvalidSignature","type":"error"},{"inputs":[{"internalType":"uint256","name":"length","type":"uint256"}],"name":"ECDSAInvalidSignatureLength","type":"error"},{"inputs":[{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"ECDSAInvalidSignatureS","type":"error"},{"inputs":[],"name":"EntryPointCannotBeZero","type":"error"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"currentBalance","type":"uint256"}],"name":"InsufficientBalance","type":"error"},{"inputs":[{"internalType":"uint256","name":"sigLength","type":"uint256"}],"name":"InvalidPaymasterSignatureLength","type":"error"},{"inputs":[],"name":"PaymasterIdCannotBeZero","type":"error"},{"inputs":[],"name":"ReentrancyGuardReentrantCall","type":"error"},{"inputs":[],"name":"UserDepositForInstead","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"_oldValue","type":"uint256"},{"indexed":true,"internalType":"uint256","name":"_newValue","type":"uint256"}],"name":"EPGasOverheadChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"_paymasterId","type":"address"},{"indexed":true,"internalType":"uint256","name":"_charge","type":"uint256"}],"name":"GasBalanceDeducted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"_paymasterId","type":"address"},{"indexed":true,"internalType":"uint256","name":"_value","type":"uint256"}],"name":"GasDeposited","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"_paymasterId","type":"address"},{"indexed":true,"internalType":"address","name":"_to","type":"address"},{"indexed":true,"internalType":"uint256","name":"_value","type":"uint256"}],"name":"GasWithdrawn","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"previousAdminRole","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"newAdminRole","type":"bytes32"}],"name":"RoleAdminChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleGranted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleRevoked","type":"event"},{"inputs":[],"name":"ADMIN","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"CASHIER","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"DEFAULT_ADMIN_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"SIGNER","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint32","name":"unstakeDelaySec","type":"uint32"}],"name":"addStake","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"deposit","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"paymasterId","type":"address"}],"name":"depositFor","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"entryPoint","outputs":[{"internalType":"contract IEntryPoint","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"paymasterId","type":"address"}],"name":"getBalance","outputs":[{"internalType":"uint256","name":"balance","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getDeposit","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"nonce","type":"uint256"},{"internalType":"bytes","name":"initCode","type":"bytes"},{"internalType":"bytes","name":"callData","type":"bytes"},{"internalType":"uint256","name":"callGasLimit","type":"uint256"},{"internalType":"uint256","name":"verificationGasLimit","type":"uint256"},{"internalType":"uint256","name":"preVerificationGas","type":"uint256"},{"internalType":"uint256","name":"maxFeePerGas","type":"uint256"},{"internalType":"uint256","name":"maxPriorityFeePerGas","type":"uint256"},{"internalType":"bytes","name":"paymasterAndData","type":"bytes"},{"internalType":"bytes","name":"signature","type":"bytes"}],"internalType":"struct UserOperation","name":"userOp","type":"tuple"},{"internalType":"address","name":"paymasterId","type":"address"},{"internalType":"uint48","name":"validUntil","type":"uint48"},{"internalType":"uint48","name":"validAfter","type":"uint48"}],"name":"getHash","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"}],"name":"getRoleAdmin","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"grantRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"hasRole","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes","name":"paymasterAndData","type":"bytes"}],"name":"parsePaymasterAndData","outputs":[{"internalType":"address","name":"paymasterId","type":"address"},{"internalType":"uint48","name":"validUntil","type":"uint48"},{"internalType":"uint48","name":"validAfter","type":"uint48"},{"internalType":"bytes","name":"signature","type":"bytes"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"paymasterIdBalances","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"enum IPaymaster.PostOpMode","name":"mode","type":"uint8"},{"internalType":"bytes","name":"context","type":"bytes"},{"internalType":"uint256","name":"actualGasCost","type":"uint256"}],"name":"postOp","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"callerConfirmation","type":"address"}],"name":"renounceRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"revokeRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"value","type":"uint256"}],"name":"setUnaccountedEPGasOverhead","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"unlockStake","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"nonce","type":"uint256"},{"internalType":"bytes","name":"initCode","type":"bytes"},{"internalType":"bytes","name":"callData","type":"bytes"},{"internalType":"uint256","name":"callGasLimit","type":"uint256"},{"internalType":"uint256","name":"verificationGasLimit","type":"uint256"},{"internalType":"uint256","name":"preVerificationGas","type":"uint256"},{"internalType":"uint256","name":"maxFeePerGas","type":"uint256"},{"internalType":"uint256","name":"maxPriorityFeePerGas","type":"uint256"},{"internalType":"bytes","name":"paymasterAndData","type":"bytes"},{"internalType":"bytes","name":"signature","type":"bytes"}],"internalType":"struct UserOperation","name":"userOp","type":"tuple"},{"internalType":"bytes32","name":"userOpHash","type":"bytes32"},{"internalType":"uint256","name":"maxCost","type":"uint256"}],"name":"validatePaymasterUserOp","outputs":[{"internalType":"bytes","name":"context","type":"bytes"},{"internalType":"uint256","name":"validationData","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address payable","name":"withdrawAddress","type":"address"}],"name":"withdrawStake","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address payable","name":"withdrawAddress","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"withdrawTo","outputs":[],"stateMutability":"nonpayable","type":"function"}]

60a060405260405162001b3838038062001b38833981016040819052620000269162000136565b6001600160a01b038216608081905260018055620000575760405163091748f960e21b815260040160405180910390fd5b620000635f8262000072565b5050612ee06002555062000173565b5f828152602081815260408083206001600160a01b038516845290915281205460ff1662000115575f838152602081815260408083206001600160a01b03861684529091529020805460ff19166001179055620000cc3390565b6001600160a01b0316826001600160a01b0316847f2f8788117e7eff1d82e926ec794901d17c78024a50270940304540a733656f0d60405160405180910390a450600162000118565b505f5b92915050565b6001600160a01b038116811462000133575f80fd5b50565b5f806040838503121562000148575f80fd5b825162000155816200011e565b602084015190925062000168816200011e565b809150509250929050565b60805161197b620001bd5f395f81816103bc0152818161054b01528181610671015281816109e901528181610a9f01528181610b4401528181610bb60152610e26015261197b5ff3fe608060405260043610610161575f3560e01c8063a217fddf116100cd578063c23a5cea11610087578063d547741f11610062578063d547741f14610445578063deeb387414610464578063f465c77e14610483578063f8b2cb4f146104b0575f80fd5b8063c23a5cea1461040a578063c399ec8814610429578063d0e30db01461043d575f80fd5b8063a217fddf1461033b578063a40a7ddc1461034e578063a9a2340914610379578063aa67c91914610398578063b0d691fe146103ab578063bb9fe6bf146103f6575f80fd5b806336568abe1161011e57806336568abe1461025b578063582abd121461027a5780635e1e7b54146102ad5780638016bbb6146102cc57806391d14854146102ec57806394d4ad601461030b575f80fd5b806301ffc9a7146101655780630396cb6014610199578063205c2878146101ae578063248a9ca3146101cd5780632a0acc6a146102095780632f2ff15d1461023c575b5f80fd5b348015610170575f80fd5b5061018461017f366004611406565b6104e4565b60405190151581526020015b60405180910390f35b6101ac6101a736600461142d565b61051a565b005b3480156101b9575f80fd5b506101ac6101c8366004611464565b6105b1565b3480156101d8575f80fd5b506101fb6101e736600461148e565b5f9081526020819052604090206001015490565b604051908152602001610190565b348015610214575f80fd5b506101fb7fdf8b4c520ffe197c5343c6f5aec59570151ef9a492f2c624fd45ddde6135ec4281565b348015610247575f80fd5b506101ac6102563660046114a5565b61070d565b348015610266575f80fd5b506101ac6102753660046114a5565b610737565b348015610285575f80fd5b506101fb7f2aeb38be3df14d720aeb10a2de6df09b0fb3cd5c5ec256283a22d4593110ca4081565b3480156102b8575f80fd5b506101fb6102c7366004611504565b61076f565b3480156102d7575f80fd5b506101fb5f8051602061192683398151915281565b3480156102f7575f80fd5b506101846103063660046114a5565b6108ad565b348015610316575f80fd5b5061032a6103253660046115b6565b6108d5565b6040516101909594939291906115f5565b348015610346575f80fd5b506101fb5f81565b348015610359575f80fd5b506101fb61036836600461164e565b60036020525f908152604090205481565b348015610384575f80fd5b506101ac610393366004611669565b610931565b6101ac6103a636600461164e565b610945565b3480156103b6575f80fd5b506103de7f000000000000000000000000000000000000000000000000000000000000000081565b6040516001600160a01b039091168152602001610190565b348015610401575f80fd5b506101ac610a86565b348015610415575f80fd5b506101ac61042436600461164e565b610b0e565b348015610434575f80fd5b506101fb610b9f565b6101ac610c2c565b348015610450575f80fd5b506101ac61045f3660046114a5565b610c45565b34801561046f575f80fd5b506101ac61047e36600461148e565b610c69565b34801561048e575f80fd5b506104a261049d3660046116c4565b610ccc565b604051610190929190611730565b3480156104bb575f80fd5b506101fb6104ca36600461164e565b6001600160a01b03165f9081526003602052604090205490565b5f6001600160e01b03198216637965db0b60e01b148061051457506301ffc9a760e01b6001600160e01b03198316145b92915050565b5f8051602061192683398151915261053181610cef565b604051621cb65b60e51b815263ffffffff831660048201527f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031690630396cb609034906024015f604051808303818588803b158015610596575f80fd5b505af11580156105a8573d5f803e3d5ffd5b50505050505050565b6105b9610cf9565b6001600160a01b0382166105e0576040516392bc9df360e01b815260040160405180910390fd5b335f908152600360205260409020548082111561061f5760405163cf47918160e01b815260048101839052602481018290526044015b60405180910390fd5b335f9081526003602052604090205461063990839061177e565b335f9081526003602052604090819020919091555163040b850f60e31b81526001600160a01b038481166004830152602482018490527f0000000000000000000000000000000000000000000000000000000000000000169063205c2878906044015f604051808303815f87803b1580156106b2575f80fd5b505af11580156106c4573d5f803e3d5ffd5b50506040518492506001600160a01b038616915033907f926a144b6fffc1d73f115b81af7ec66a7c12aed0ff73197c39a683753fc1d925905f90a45061070960018055565b5050565b5f8281526020819052604090206001015461072781610cef565b6107318383610d23565b50505050565b6001600160a01b03811633146107605760405163334bd91960e11b815260040160405180910390fd5b61076a8282610db2565b505050565b5f84358060208701356107856040890189611791565b6040516107939291906117d4565b6040519081900390206107a960608a018a611791565b6040516107b79291906117d4565b604080519182900382206001600160a01b03909516602083015281019290925260608201526080808201929092529087013560a08083019190915287013560c08083019190915287013560e0808301919091528701356101008083019190915287013561012082015246610140820152306101608201526101800160408051601f198184030181528282526001600160a01b038816602084015265ffffffffffff8088169284019290925290851660608301529060800160408051601f198184030181529082905261088c92916020016117e3565b60405160208183030381529060405280519060200120915050949350505050565b5f918252602082815260408084206001600160a01b0393909316845291905290205460ff1690565b5f808036816108e860286014888a611811565b6108f191611838565b60601c945061090460686028888a611811565b810190610911919061186d565b9094509250610923866068818a611811565b915091509295509295909350565b610939610e1b565b61073184848484610e8d565b61094d610cf9565b6001600160a01b038116610974576040516355cd1c6560e11b815260040160405180910390fd5b345f03610994576040516333a6177160e11b815260040160405180910390fd5b6001600160a01b0381165f908152600360205260409020546109b790349061189e565b6001600160a01b038281165f908152600360205260409081902092909255905163b760faf960e01b81523060048201527f00000000000000000000000000000000000000000000000000000000000000009091169063b760faf99034906024015f604051808303818588803b158015610a2e575f80fd5b505af1158015610a40573d5f803e3d5ffd5b50506040513493506001600160a01b03851692507f1dbbf474736d6415d6a265fabee708fe6e988f6fd0c9d870ded36cab380898dd91505f90a3610a8360018055565b50565b5f80516020611926833981519152610a9d81610cef565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031663bb9fe6bf6040518163ffffffff1660e01b81526004015f604051808303815f87803b158015610af5575f80fd5b505af1158015610b07573d5f803e3d5ffd5b5050505050565b5f80516020611926833981519152610b2581610cef565b60405163611d2e7560e11b81526001600160a01b0383811660048301527f0000000000000000000000000000000000000000000000000000000000000000169063c23a5cea906024015f604051808303815f87803b158015610b85575f80fd5b505af1158015610b97573d5f803e3d5ffd5b505050505050565b6040516370a0823160e01b81523060048201525f907f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316906370a0823190602401602060405180830381865afa158015610c03573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610c2791906118b1565b905090565b60405163f0082dcf60e01b815260040160405180910390fd5b5f82815260208190526040902060010154610c5f81610cef565b6107318383610db2565b7fdf8b4c520ffe197c5343c6f5aec59570151ef9a492f2c624fd45ddde6135ec42610c9381610cef565b6002805490839055604051839082907f0b2f957fc0a9306310238ef9a212935360e98fe3f8bc525f4cb69d38b1efa859905f90a3505050565b60605f610cd7610e1b565b610ce2858585610f3c565b915091505b935093915050565b610a838133611136565b600260015403610d1c57604051633ee5aeb560e01b815260040160405180910390fd5b6002600155565b5f610d2e83836108ad565b610dab575f838152602081815260408083206001600160a01b03861684529091529020805460ff19166001179055610d633390565b6001600160a01b0316826001600160a01b0316847f2f8788117e7eff1d82e926ec794901d17c78024a50270940304540a733656f0d60405160405180910390a4506001610514565b505f610514565b5f610dbd83836108ad565b15610dab575f838152602081815260408083206001600160a01b0386168085529252808320805460ff1916905551339286917ff6391f5c32d9c69d2a47ea670b442974b53935d1edc7fd64eb21e047a839171b9190a4506001610514565b336001600160a01b037f00000000000000000000000000000000000000000000000000000000000000001614610e8b5760405162461bcd60e51b815260206004820152601560248201527414d95b99195c881b9bdd08115b9d1c9e541bda5b9d605a1b6044820152606401610616565b565b5f8080610e9c858701876118c8565b9250925092505f610ead838361116f565b90505f81600254610ebe91906118fa565b610ec8908761189e565b6001600160a01b0386165f90815260036020526040902054909150610eee90829061177e565b6001600160a01b0386165f8181526003602052604080822093909355915183927f5dc1c754041954fe976773fa441397a7928c7127a1c83904214a7d256339900791a3505050505050505050565b60605f8080803681610f556103256101208c018c611791565b945094509450945094505f610f6c8b87878761076f565b905060418214610fe45760405162461bcd60e51b815260206004820152603760248201527f5061796d61737465723a20696e76616c6964207369676e6174757265206c656e60448201527f67746820696e207061796d6173746572416e64446174610000000000000000006064820152608401610616565b6110527f2aeb38be3df14d720aeb10a2de6df09b0fb3cd5c5ec256283a22d4593110ca4061030685858080601f0160208091040260200160405190810160405280939291908181526020018383808284375f9201919091525061104c92508791506111989050565b906111ca565b61108157611062600186866111f2565b60405180602001604052805f8152509097509750505050505050610ce7565b6001600160a01b0386165f908152600360205260409020548911156110dd576001600160a01b0386165f908152600360205260409081902054905163cf47918160e01b8152610616918b91600401918252602082015260400190565b604080516001600160a01b038816602082015260e08d0135918101919091526101008c013560608201526080016040516020818303038152906040526111245f87876111f2565b97509750505050505050935093915050565b61114082826108ad565b6107095760405163e2517d3f60e01b81526001600160a01b038216600482015260248101839052604401610616565b5f81830361117e575081610514565b6111918361118c488561189e565b611228565b9392505050565b7f19457468657265756d205369676e6564204d6573736167653a0a3332000000005f908152601c91909152603c902090565b5f805f806111d8868661123d565b9250925092506111e88282611286565b5090949350505050565b5f60d08265ffffffffffff16901b60a08465ffffffffffff16901b85611218575f61121b565b60015b60ff161717949350505050565b5f8183106112365781611191565b5090919050565b5f805f8351604103611274576020840151604085015160608601515f1a6112668882858561133e565b95509550955050505061127f565b505081515f91506002905b9250925092565b5f82600381111561129957611299611911565b036112a2575050565b60018260038111156112b6576112b6611911565b036112d45760405163f645eedf60e01b815260040160405180910390fd5b60028260038111156112e8576112e8611911565b036113095760405163fce698f760e01b815260048101829052602401610616565b600382600381111561131d5761131d611911565b03610709576040516335e2f38360e21b815260048101829052602401610616565b5f80807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a084111561137757505f915060039050826113fc565b604080515f808252602082018084528a905260ff891692820192909252606081018790526080810186905260019060a0016020604051602081039080840390855afa1580156113c8573d5f803e3d5ffd5b5050604051601f1901519150506001600160a01b0381166113f357505f9250600191508290506113fc565b92505f91508190505b9450945094915050565b5f60208284031215611416575f80fd5b81356001600160e01b031981168114611191575f80fd5b5f6020828403121561143d575f80fd5b813563ffffffff81168114611191575f80fd5b6001600160a01b0381168114610a83575f80fd5b5f8060408385031215611475575f80fd5b823561148081611450565b946020939093013593505050565b5f6020828403121561149e575f80fd5b5035919050565b5f80604083850312156114b6575f80fd5b8235915060208301356114c881611450565b809150509250929050565b5f61016082840312156114e4575f80fd5b50919050565b803565ffffffffffff811681146114ff575f80fd5b919050565b5f805f8060808587031215611517575f80fd5b843567ffffffffffffffff81111561152d575f80fd5b611539878288016114d3565b945050602085013561154a81611450565b9250611558604086016114ea565b9150611566606086016114ea565b905092959194509250565b5f8083601f840112611581575f80fd5b50813567ffffffffffffffff811115611598575f80fd5b6020830191508360208285010111156115af575f80fd5b9250929050565b5f80602083850312156115c7575f80fd5b823567ffffffffffffffff8111156115dd575f80fd5b6115e985828601611571565b90969095509350505050565b6001600160a01b038616815265ffffffffffff85811660208301528416604082015260806060820181905281018290525f828460a08401375f60a0848401015260a0601f19601f85011683010190509695505050505050565b5f6020828403121561165e575f80fd5b813561119181611450565b5f805f806060858703121561167c575f80fd5b84356003811061168a575f80fd5b9350602085013567ffffffffffffffff8111156116a5575f80fd5b6116b187828801611571565b9598909750949560400135949350505050565b5f805f606084860312156116d6575f80fd5b833567ffffffffffffffff8111156116ec575f80fd5b6116f8868287016114d3565b9660208601359650604090950135949350505050565b5f5b83811015611728578181015183820152602001611710565b50505f910152565b604081525f835180604084015261174e81606085016020880161170e565b602083019390935250601f91909101601f191601606001919050565b634e487b7160e01b5f52601160045260245ffd5b818103818111156105145761051461176a565b5f808335601e198436030181126117a6575f80fd5b83018035915067ffffffffffffffff8211156117c0575f80fd5b6020019150368190038213156115af575f80fd5b818382375f9101908152919050565b5f83516117f481846020880161170e565b83519083019061180881836020880161170e565b01949350505050565b5f808585111561181f575f80fd5b8386111561182b575f80fd5b5050820193919092039150565b6bffffffffffffffffffffffff1981358181169160148510156118655780818660140360031b1b83161692505b505092915050565b5f806040838503121561187e575f80fd5b611887836114ea565b9150611895602084016114ea565b90509250929050565b808201808211156105145761051461176a565b5f602082840312156118c1575f80fd5b5051919050565b5f805f606084860312156118da575f80fd5b83356118e581611450565b95602085013595506040909401359392505050565b80820281158282048414176105145761051461176a565b634e487b7160e01b5f52602160045260245ffdfeaf0d3ae5661af50c10d4a5f8117fa3fc098b633d350de8cd751d260a50e3eb29a26469706673582212204e2dca37ccf6a0195973038a21f920bb4ec420745c993a12a62ebe17c4e0cf1264736f6c634300081400330000000000000000000000005ff137d4b0fdcd49dca30c7cf57e578a026d2789000000000000000000000000a860b0c8187ae5eaf719a5d56334a53bcbade3d9

Deployed Bytecode

0x608060405260043610610161575f3560e01c8063a217fddf116100cd578063c23a5cea11610087578063d547741f11610062578063d547741f14610445578063deeb387414610464578063f465c77e14610483578063f8b2cb4f146104b0575f80fd5b8063c23a5cea1461040a578063c399ec8814610429578063d0e30db01461043d575f80fd5b8063a217fddf1461033b578063a40a7ddc1461034e578063a9a2340914610379578063aa67c91914610398578063b0d691fe146103ab578063bb9fe6bf146103f6575f80fd5b806336568abe1161011e57806336568abe1461025b578063582abd121461027a5780635e1e7b54146102ad5780638016bbb6146102cc57806391d14854146102ec57806394d4ad601461030b575f80fd5b806301ffc9a7146101655780630396cb6014610199578063205c2878146101ae578063248a9ca3146101cd5780632a0acc6a146102095780632f2ff15d1461023c575b5f80fd5b348015610170575f80fd5b5061018461017f366004611406565b6104e4565b60405190151581526020015b60405180910390f35b6101ac6101a736600461142d565b61051a565b005b3480156101b9575f80fd5b506101ac6101c8366004611464565b6105b1565b3480156101d8575f80fd5b506101fb6101e736600461148e565b5f9081526020819052604090206001015490565b604051908152602001610190565b348015610214575f80fd5b506101fb7fdf8b4c520ffe197c5343c6f5aec59570151ef9a492f2c624fd45ddde6135ec4281565b348015610247575f80fd5b506101ac6102563660046114a5565b61070d565b348015610266575f80fd5b506101ac6102753660046114a5565b610737565b348015610285575f80fd5b506101fb7f2aeb38be3df14d720aeb10a2de6df09b0fb3cd5c5ec256283a22d4593110ca4081565b3480156102b8575f80fd5b506101fb6102c7366004611504565b61076f565b3480156102d7575f80fd5b506101fb5f8051602061192683398151915281565b3480156102f7575f80fd5b506101846103063660046114a5565b6108ad565b348015610316575f80fd5b5061032a6103253660046115b6565b6108d5565b6040516101909594939291906115f5565b348015610346575f80fd5b506101fb5f81565b348015610359575f80fd5b506101fb61036836600461164e565b60036020525f908152604090205481565b348015610384575f80fd5b506101ac610393366004611669565b610931565b6101ac6103a636600461164e565b610945565b3480156103b6575f80fd5b506103de7f0000000000000000000000005ff137d4b0fdcd49dca30c7cf57e578a026d278981565b6040516001600160a01b039091168152602001610190565b348015610401575f80fd5b506101ac610a86565b348015610415575f80fd5b506101ac61042436600461164e565b610b0e565b348015610434575f80fd5b506101fb610b9f565b6101ac610c2c565b348015610450575f80fd5b506101ac61045f3660046114a5565b610c45565b34801561046f575f80fd5b506101ac61047e36600461148e565b610c69565b34801561048e575f80fd5b506104a261049d3660046116c4565b610ccc565b604051610190929190611730565b3480156104bb575f80fd5b506101fb6104ca36600461164e565b6001600160a01b03165f9081526003602052604090205490565b5f6001600160e01b03198216637965db0b60e01b148061051457506301ffc9a760e01b6001600160e01b03198316145b92915050565b5f8051602061192683398151915261053181610cef565b604051621cb65b60e51b815263ffffffff831660048201527f0000000000000000000000005ff137d4b0fdcd49dca30c7cf57e578a026d27896001600160a01b031690630396cb609034906024015f604051808303818588803b158015610596575f80fd5b505af11580156105a8573d5f803e3d5ffd5b50505050505050565b6105b9610cf9565b6001600160a01b0382166105e0576040516392bc9df360e01b815260040160405180910390fd5b335f908152600360205260409020548082111561061f5760405163cf47918160e01b815260048101839052602481018290526044015b60405180910390fd5b335f9081526003602052604090205461063990839061177e565b335f9081526003602052604090819020919091555163040b850f60e31b81526001600160a01b038481166004830152602482018490527f0000000000000000000000005ff137d4b0fdcd49dca30c7cf57e578a026d2789169063205c2878906044015f604051808303815f87803b1580156106b2575f80fd5b505af11580156106c4573d5f803e3d5ffd5b50506040518492506001600160a01b038616915033907f926a144b6fffc1d73f115b81af7ec66a7c12aed0ff73197c39a683753fc1d925905f90a45061070960018055565b5050565b5f8281526020819052604090206001015461072781610cef565b6107318383610d23565b50505050565b6001600160a01b03811633146107605760405163334bd91960e11b815260040160405180910390fd5b61076a8282610db2565b505050565b5f84358060208701356107856040890189611791565b6040516107939291906117d4565b6040519081900390206107a960608a018a611791565b6040516107b79291906117d4565b604080519182900382206001600160a01b03909516602083015281019290925260608201526080808201929092529087013560a08083019190915287013560c08083019190915287013560e0808301919091528701356101008083019190915287013561012082015246610140820152306101608201526101800160408051601f198184030181528282526001600160a01b038816602084015265ffffffffffff8088169284019290925290851660608301529060800160408051601f198184030181529082905261088c92916020016117e3565b60405160208183030381529060405280519060200120915050949350505050565b5f918252602082815260408084206001600160a01b0393909316845291905290205460ff1690565b5f808036816108e860286014888a611811565b6108f191611838565b60601c945061090460686028888a611811565b810190610911919061186d565b9094509250610923866068818a611811565b915091509295509295909350565b610939610e1b565b61073184848484610e8d565b61094d610cf9565b6001600160a01b038116610974576040516355cd1c6560e11b815260040160405180910390fd5b345f03610994576040516333a6177160e11b815260040160405180910390fd5b6001600160a01b0381165f908152600360205260409020546109b790349061189e565b6001600160a01b038281165f908152600360205260409081902092909255905163b760faf960e01b81523060048201527f0000000000000000000000005ff137d4b0fdcd49dca30c7cf57e578a026d27899091169063b760faf99034906024015f604051808303818588803b158015610a2e575f80fd5b505af1158015610a40573d5f803e3d5ffd5b50506040513493506001600160a01b03851692507f1dbbf474736d6415d6a265fabee708fe6e988f6fd0c9d870ded36cab380898dd91505f90a3610a8360018055565b50565b5f80516020611926833981519152610a9d81610cef565b7f0000000000000000000000005ff137d4b0fdcd49dca30c7cf57e578a026d27896001600160a01b031663bb9fe6bf6040518163ffffffff1660e01b81526004015f604051808303815f87803b158015610af5575f80fd5b505af1158015610b07573d5f803e3d5ffd5b5050505050565b5f80516020611926833981519152610b2581610cef565b60405163611d2e7560e11b81526001600160a01b0383811660048301527f0000000000000000000000005ff137d4b0fdcd49dca30c7cf57e578a026d2789169063c23a5cea906024015f604051808303815f87803b158015610b85575f80fd5b505af1158015610b97573d5f803e3d5ffd5b505050505050565b6040516370a0823160e01b81523060048201525f907f0000000000000000000000005ff137d4b0fdcd49dca30c7cf57e578a026d27896001600160a01b0316906370a0823190602401602060405180830381865afa158015610c03573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610c2791906118b1565b905090565b60405163f0082dcf60e01b815260040160405180910390fd5b5f82815260208190526040902060010154610c5f81610cef565b6107318383610db2565b7fdf8b4c520ffe197c5343c6f5aec59570151ef9a492f2c624fd45ddde6135ec42610c9381610cef565b6002805490839055604051839082907f0b2f957fc0a9306310238ef9a212935360e98fe3f8bc525f4cb69d38b1efa859905f90a3505050565b60605f610cd7610e1b565b610ce2858585610f3c565b915091505b935093915050565b610a838133611136565b600260015403610d1c57604051633ee5aeb560e01b815260040160405180910390fd5b6002600155565b5f610d2e83836108ad565b610dab575f838152602081815260408083206001600160a01b03861684529091529020805460ff19166001179055610d633390565b6001600160a01b0316826001600160a01b0316847f2f8788117e7eff1d82e926ec794901d17c78024a50270940304540a733656f0d60405160405180910390a4506001610514565b505f610514565b5f610dbd83836108ad565b15610dab575f838152602081815260408083206001600160a01b0386168085529252808320805460ff1916905551339286917ff6391f5c32d9c69d2a47ea670b442974b53935d1edc7fd64eb21e047a839171b9190a4506001610514565b336001600160a01b037f0000000000000000000000005ff137d4b0fdcd49dca30c7cf57e578a026d27891614610e8b5760405162461bcd60e51b815260206004820152601560248201527414d95b99195c881b9bdd08115b9d1c9e541bda5b9d605a1b6044820152606401610616565b565b5f8080610e9c858701876118c8565b9250925092505f610ead838361116f565b90505f81600254610ebe91906118fa565b610ec8908761189e565b6001600160a01b0386165f90815260036020526040902054909150610eee90829061177e565b6001600160a01b0386165f8181526003602052604080822093909355915183927f5dc1c754041954fe976773fa441397a7928c7127a1c83904214a7d256339900791a3505050505050505050565b60605f8080803681610f556103256101208c018c611791565b945094509450945094505f610f6c8b87878761076f565b905060418214610fe45760405162461bcd60e51b815260206004820152603760248201527f5061796d61737465723a20696e76616c6964207369676e6174757265206c656e60448201527f67746820696e207061796d6173746572416e64446174610000000000000000006064820152608401610616565b6110527f2aeb38be3df14d720aeb10a2de6df09b0fb3cd5c5ec256283a22d4593110ca4061030685858080601f0160208091040260200160405190810160405280939291908181526020018383808284375f9201919091525061104c92508791506111989050565b906111ca565b61108157611062600186866111f2565b60405180602001604052805f8152509097509750505050505050610ce7565b6001600160a01b0386165f908152600360205260409020548911156110dd576001600160a01b0386165f908152600360205260409081902054905163cf47918160e01b8152610616918b91600401918252602082015260400190565b604080516001600160a01b038816602082015260e08d0135918101919091526101008c013560608201526080016040516020818303038152906040526111245f87876111f2565b97509750505050505050935093915050565b61114082826108ad565b6107095760405163e2517d3f60e01b81526001600160a01b038216600482015260248101839052604401610616565b5f81830361117e575081610514565b6111918361118c488561189e565b611228565b9392505050565b7f19457468657265756d205369676e6564204d6573736167653a0a3332000000005f908152601c91909152603c902090565b5f805f806111d8868661123d565b9250925092506111e88282611286565b5090949350505050565b5f60d08265ffffffffffff16901b60a08465ffffffffffff16901b85611218575f61121b565b60015b60ff161717949350505050565b5f8183106112365781611191565b5090919050565b5f805f8351604103611274576020840151604085015160608601515f1a6112668882858561133e565b95509550955050505061127f565b505081515f91506002905b9250925092565b5f82600381111561129957611299611911565b036112a2575050565b60018260038111156112b6576112b6611911565b036112d45760405163f645eedf60e01b815260040160405180910390fd5b60028260038111156112e8576112e8611911565b036113095760405163fce698f760e01b815260048101829052602401610616565b600382600381111561131d5761131d611911565b03610709576040516335e2f38360e21b815260048101829052602401610616565b5f80807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a084111561137757505f915060039050826113fc565b604080515f808252602082018084528a905260ff891692820192909252606081018790526080810186905260019060a0016020604051602081039080840390855afa1580156113c8573d5f803e3d5ffd5b5050604051601f1901519150506001600160a01b0381166113f357505f9250600191508290506113fc565b92505f91508190505b9450945094915050565b5f60208284031215611416575f80fd5b81356001600160e01b031981168114611191575f80fd5b5f6020828403121561143d575f80fd5b813563ffffffff81168114611191575f80fd5b6001600160a01b0381168114610a83575f80fd5b5f8060408385031215611475575f80fd5b823561148081611450565b946020939093013593505050565b5f6020828403121561149e575f80fd5b5035919050565b5f80604083850312156114b6575f80fd5b8235915060208301356114c881611450565b809150509250929050565b5f61016082840312156114e4575f80fd5b50919050565b803565ffffffffffff811681146114ff575f80fd5b919050565b5f805f8060808587031215611517575f80fd5b843567ffffffffffffffff81111561152d575f80fd5b611539878288016114d3565b945050602085013561154a81611450565b9250611558604086016114ea565b9150611566606086016114ea565b905092959194509250565b5f8083601f840112611581575f80fd5b50813567ffffffffffffffff811115611598575f80fd5b6020830191508360208285010111156115af575f80fd5b9250929050565b5f80602083850312156115c7575f80fd5b823567ffffffffffffffff8111156115dd575f80fd5b6115e985828601611571565b90969095509350505050565b6001600160a01b038616815265ffffffffffff85811660208301528416604082015260806060820181905281018290525f828460a08401375f60a0848401015260a0601f19601f85011683010190509695505050505050565b5f6020828403121561165e575f80fd5b813561119181611450565b5f805f806060858703121561167c575f80fd5b84356003811061168a575f80fd5b9350602085013567ffffffffffffffff8111156116a5575f80fd5b6116b187828801611571565b9598909750949560400135949350505050565b5f805f606084860312156116d6575f80fd5b833567ffffffffffffffff8111156116ec575f80fd5b6116f8868287016114d3565b9660208601359650604090950135949350505050565b5f5b83811015611728578181015183820152602001611710565b50505f910152565b604081525f835180604084015261174e81606085016020880161170e565b602083019390935250601f91909101601f191601606001919050565b634e487b7160e01b5f52601160045260245ffd5b818103818111156105145761051461176a565b5f808335601e198436030181126117a6575f80fd5b83018035915067ffffffffffffffff8211156117c0575f80fd5b6020019150368190038213156115af575f80fd5b818382375f9101908152919050565b5f83516117f481846020880161170e565b83519083019061180881836020880161170e565b01949350505050565b5f808585111561181f575f80fd5b8386111561182b575f80fd5b5050820193919092039150565b6bffffffffffffffffffffffff1981358181169160148510156118655780818660140360031b1b83161692505b505092915050565b5f806040838503121561187e575f80fd5b611887836114ea565b9150611895602084016114ea565b90509250929050565b808201808211156105145761051461176a565b5f602082840312156118c1575f80fd5b5051919050565b5f805f606084860312156118da575f80fd5b83356118e581611450565b95602085013595506040909401359392505050565b80820281158282048414176105145761051461176a565b634e487b7160e01b5f52602160045260245ffdfeaf0d3ae5661af50c10d4a5f8117fa3fc098b633d350de8cd751d260a50e3eb29a26469706673582212204e2dca37ccf6a0195973038a21f920bb4ec420745c993a12a62ebe17c4e0cf1264736f6c63430008140033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

0000000000000000000000005ff137d4b0fdcd49dca30c7cf57e578a026d2789000000000000000000000000a860b0c8187ae5eaf719a5d56334a53bcbade3d9

-----Decoded View---------------
Arg [0] : _entryPoint (address): 0x5FF137D4b0FDCD49DcA30c7CF57E578a026d2789
Arg [1] : _admin (address): 0xA860b0C8187aE5EAF719A5d56334a53BCBade3D9

-----Encoded View---------------
2 Constructor Arguments found :
Arg [0] : 0000000000000000000000005ff137d4b0fdcd49dca30c7cf57e578a026d2789
Arg [1] : 000000000000000000000000a860b0c8187ae5eaf719a5d56334a53bcbade3d9


Block Transaction Gas Used Reward
view all blocks produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.