Overview
BERA Balance
BERA Value
$0.00More Info
Private Name Tags
ContractCreator
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
Loading...
Loading
This contract may be a proxy contract. Click on More Options and select Is this a proxy? to confirm and enable the "Read as Proxy" & "Write as Proxy" tabs.
Contract Source Code Verified (Exact Match)
Contract Name:
SimpleAccount
Compiler Version
v0.8.28+commit.7893614a
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT pragma solidity ^0.8.28; /* solhint-disable avoid-low-level-calls */ /* solhint-disable no-inline-assembly */ /* solhint-disable reason-string */ import "@openzeppelin/contracts/utils/cryptography/ECDSA.sol"; import "@openzeppelin/contracts/utils/cryptography/MessageHashUtils.sol"; import "@openzeppelin/contracts/proxy/utils/Initializable.sol"; import "@openzeppelin/contracts/proxy/utils/UUPSUpgradeable.sol"; import "../core/BaseAccount.sol"; import "../core/Helpers.sol"; import "./callback/TokenCallbackHandler.sol"; /** * minimal account. * this is sample minimal account. * has execute, eth handling methods * has a single signer that can send requests through the entryPoint. */ contract SimpleAccount is BaseAccount, TokenCallbackHandler, UUPSUpgradeable, Initializable { address public owner; IEntryPoint private immutable _entryPoint; event SimpleAccountInitialized(IEntryPoint indexed entryPoint, address indexed owner); modifier onlyOwner() { _onlyOwner(); _; } /// @inheritdoc BaseAccount function entryPoint() public view virtual override returns (IEntryPoint) { return _entryPoint; } // solhint-disable-next-line no-empty-blocks receive() external payable {} constructor(IEntryPoint anEntryPoint) { _entryPoint = anEntryPoint; _disableInitializers(); } function _onlyOwner() internal view { // Directly from EOA owner, or through the account itself (which gets redirected through execute()) require(msg.sender == owner || msg.sender == address(this), "only owner"); } /** * @dev The _entryPoint member is immutable, to reduce gas consumption. To upgrade EntryPoint, * a new implementation of SimpleAccount must be deployed with the new EntryPoint address, then upgrading * the implementation by calling `upgradeTo()` * @param anOwner the owner (signer) of this account */ function initialize(address anOwner) public virtual initializer { _initialize(anOwner); } function _initialize(address anOwner) internal virtual { owner = anOwner; emit SimpleAccountInitialized(_entryPoint, owner); } // Require the function call went through EntryPoint or owner function _requireForExecute() internal view override virtual { require(msg.sender == address(entryPoint()) || msg.sender == owner, "account: not Owner or EntryPoint"); } /// implement template method of BaseAccount function _validateSignature(PackedUserOperation calldata userOp, bytes32 userOpHash) internal override virtual returns (uint256 validationData) { // UserOpHash can be generated using eth_signTypedData_v4 if (owner != ECDSA.recover(userOpHash, userOp.signature)) return SIG_VALIDATION_FAILED; return SIG_VALIDATION_SUCCESS; } /** * check current account deposit in the entryPoint */ function getDeposit() public view returns (uint256) { return entryPoint().balanceOf(address(this)); } /** * deposit more funds for this account in the entryPoint */ function addDeposit() public payable { entryPoint().depositTo{value: msg.value}(address(this)); } /** * withdraw value from the account's deposit * @param withdrawAddress target to send to * @param amount to withdraw */ function withdrawDepositTo(address payable withdrawAddress, uint256 amount) public onlyOwner { entryPoint().withdrawTo(withdrawAddress, amount); } function _authorizeUpgrade(address newImplementation) internal view override { (newImplementation); _onlyOwner(); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC1967.sol) pragma solidity ^0.8.20; /** * @dev ERC-1967: Proxy Storage Slots. This interface contains the events defined in the ERC. */ interface IERC1967 { /** * @dev Emitted when the implementation is upgraded. */ event Upgraded(address indexed implementation); /** * @dev Emitted when the admin account has changed. */ event AdminChanged(address previousAdmin, address newAdmin); /** * @dev Emitted when the beacon is changed. */ event BeaconUpgraded(address indexed beacon); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC1822.sol) pragma solidity ^0.8.20; /** * @dev ERC-1822: Universal Upgradeable Proxy Standard (UUPS) documents a method for upgradeability through a simplified * proxy whose upgrades are fully controlled by the current implementation. */ interface IERC1822Proxiable { /** * @dev Returns the storage slot that the proxiable contract assumes is being used to store the implementation * address. * * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this * function revert if invoked through a proxy. */ function proxiableUUID() external view returns (bytes32); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (proxy/ERC1967/ERC1967Utils.sol) pragma solidity ^0.8.21; import {IBeacon} from "../beacon/IBeacon.sol"; import {IERC1967} from "../../interfaces/IERC1967.sol"; import {Address} from "../../utils/Address.sol"; import {StorageSlot} from "../../utils/StorageSlot.sol"; /** * @dev This library provides getters and event emitting update functions for * https://eips.ethereum.org/EIPS/eip-1967[ERC-1967] slots. */ library ERC1967Utils { /** * @dev Storage slot with the address of the current implementation. * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1. */ // solhint-disable-next-line private-vars-leading-underscore bytes32 internal constant IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; /** * @dev The `implementation` of the proxy is invalid. */ error ERC1967InvalidImplementation(address implementation); /** * @dev The `admin` of the proxy is invalid. */ error ERC1967InvalidAdmin(address admin); /** * @dev The `beacon` of the proxy is invalid. */ error ERC1967InvalidBeacon(address beacon); /** * @dev An upgrade function sees `msg.value > 0` that may be lost. */ error ERC1967NonPayable(); /** * @dev Returns the current implementation address. */ function getImplementation() internal view returns (address) { return StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value; } /** * @dev Stores a new address in the ERC-1967 implementation slot. */ function _setImplementation(address newImplementation) private { if (newImplementation.code.length == 0) { revert ERC1967InvalidImplementation(newImplementation); } StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value = newImplementation; } /** * @dev Performs implementation upgrade with additional setup call if data is nonempty. * This function is payable only if the setup call is performed, otherwise `msg.value` is rejected * to avoid stuck value in the contract. * * Emits an {IERC1967-Upgraded} event. */ function upgradeToAndCall(address newImplementation, bytes memory data) internal { _setImplementation(newImplementation); emit IERC1967.Upgraded(newImplementation); if (data.length > 0) { Address.functionDelegateCall(newImplementation, data); } else { _checkNonPayable(); } } /** * @dev Storage slot with the admin of the contract. * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1. */ // solhint-disable-next-line private-vars-leading-underscore bytes32 internal constant ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103; /** * @dev Returns the current admin. * * TIP: To get this value clients can read directly from the storage slot shown below (specified by ERC-1967) using * the https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call. * `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103` */ function getAdmin() internal view returns (address) { return StorageSlot.getAddressSlot(ADMIN_SLOT).value; } /** * @dev Stores a new address in the ERC-1967 admin slot. */ function _setAdmin(address newAdmin) private { if (newAdmin == address(0)) { revert ERC1967InvalidAdmin(address(0)); } StorageSlot.getAddressSlot(ADMIN_SLOT).value = newAdmin; } /** * @dev Changes the admin of the proxy. * * Emits an {IERC1967-AdminChanged} event. */ function changeAdmin(address newAdmin) internal { emit IERC1967.AdminChanged(getAdmin(), newAdmin); _setAdmin(newAdmin); } /** * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy. * This is the keccak-256 hash of "eip1967.proxy.beacon" subtracted by 1. */ // solhint-disable-next-line private-vars-leading-underscore bytes32 internal constant BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50; /** * @dev Returns the current beacon. */ function getBeacon() internal view returns (address) { return StorageSlot.getAddressSlot(BEACON_SLOT).value; } /** * @dev Stores a new beacon in the ERC-1967 beacon slot. */ function _setBeacon(address newBeacon) private { if (newBeacon.code.length == 0) { revert ERC1967InvalidBeacon(newBeacon); } StorageSlot.getAddressSlot(BEACON_SLOT).value = newBeacon; address beaconImplementation = IBeacon(newBeacon).implementation(); if (beaconImplementation.code.length == 0) { revert ERC1967InvalidImplementation(beaconImplementation); } } /** * @dev Change the beacon and trigger a setup call if data is nonempty. * This function is payable only if the setup call is performed, otherwise `msg.value` is rejected * to avoid stuck value in the contract. * * Emits an {IERC1967-BeaconUpgraded} event. * * CAUTION: Invoking this function has no effect on an instance of {BeaconProxy} since v5, since * it uses an immutable beacon without looking at the value of the ERC-1967 beacon slot for * efficiency. */ function upgradeBeaconToAndCall(address newBeacon, bytes memory data) internal { _setBeacon(newBeacon); emit IERC1967.BeaconUpgraded(newBeacon); if (data.length > 0) { Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data); } else { _checkNonPayable(); } } /** * @dev Reverts if `msg.value` is not zero. It can be used to avoid `msg.value` stuck in the contract * if an upgrade doesn't perform an initialization call. */ function _checkNonPayable() private { if (msg.value > 0) { revert ERC1967NonPayable(); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (proxy/beacon/IBeacon.sol) pragma solidity ^0.8.20; /** * @dev This is the interface that {BeaconProxy} expects of its beacon. */ interface IBeacon { /** * @dev Must return an address that can be used as a delegate call target. * * {UpgradeableBeacon} will check that this address is a contract. */ function implementation() external view returns (address); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (proxy/utils/Initializable.sol) pragma solidity ^0.8.20; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ```solidity * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Storage of the initializable contract. * * It's implemented on a custom ERC-7201 namespace to reduce the risk of storage collisions * when using with upgradeable contracts. * * @custom:storage-location erc7201:openzeppelin.storage.Initializable */ struct InitializableStorage { /** * @dev Indicates that the contract has been initialized. */ uint64 _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool _initializing; } // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Initializable")) - 1)) & ~bytes32(uint256(0xff)) bytes32 private constant INITIALIZABLE_STORAGE = 0xf0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00; /** * @dev The contract is already initialized. */ error InvalidInitialization(); /** * @dev The contract is not initializing. */ error NotInitializing(); /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint64 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. * * Similar to `reinitializer(1)`, except that in the context of a constructor an `initializer` may be invoked any * number of times. This behavior in the constructor can be useful during testing and is not expected to be used in * production. * * Emits an {Initialized} event. */ modifier initializer() { // solhint-disable-next-line var-name-mixedcase InitializableStorage storage $ = _getInitializableStorage(); // Cache values to avoid duplicated sloads bool isTopLevelCall = !$._initializing; uint64 initialized = $._initialized; // Allowed calls: // - initialSetup: the contract is not in the initializing state and no previous version was // initialized // - construction: the contract is initialized at version 1 (no reininitialization) and the // current contract is just being deployed bool initialSetup = initialized == 0 && isTopLevelCall; bool construction = initialized == 1 && address(this).code.length == 0; if (!initialSetup && !construction) { revert InvalidInitialization(); } $._initialized = 1; if (isTopLevelCall) { $._initializing = true; } _; if (isTopLevelCall) { $._initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * A reinitializer may be used after the original initialization step. This is essential to configure modules that * are added through upgrades and that require initialization. * * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer` * cannot be nested. If one is invoked in the context of another, execution will revert. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. * * WARNING: Setting the version to 2**64 - 1 will prevent any future reinitialization. * * Emits an {Initialized} event. */ modifier reinitializer(uint64 version) { // solhint-disable-next-line var-name-mixedcase InitializableStorage storage $ = _getInitializableStorage(); if ($._initializing || $._initialized >= version) { revert InvalidInitialization(); } $._initialized = version; $._initializing = true; _; $._initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { _checkInitializing(); _; } /** * @dev Reverts if the contract is not in an initializing state. See {onlyInitializing}. */ function _checkInitializing() internal view virtual { if (!_isInitializing()) { revert NotInitializing(); } } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. * * Emits an {Initialized} event the first time it is successfully executed. */ function _disableInitializers() internal virtual { // solhint-disable-next-line var-name-mixedcase InitializableStorage storage $ = _getInitializableStorage(); if ($._initializing) { revert InvalidInitialization(); } if ($._initialized != type(uint64).max) { $._initialized = type(uint64).max; emit Initialized(type(uint64).max); } } /** * @dev Returns the highest version that has been initialized. See {reinitializer}. */ function _getInitializedVersion() internal view returns (uint64) { return _getInitializableStorage()._initialized; } /** * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}. */ function _isInitializing() internal view returns (bool) { return _getInitializableStorage()._initializing; } /** * @dev Returns a pointer to the storage namespace. */ // solhint-disable-next-line var-name-mixedcase function _getInitializableStorage() private pure returns (InitializableStorage storage $) { assembly { $.slot := INITIALIZABLE_STORAGE } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (proxy/utils/UUPSUpgradeable.sol) pragma solidity ^0.8.20; import {IERC1822Proxiable} from "../../interfaces/draft-IERC1822.sol"; import {ERC1967Utils} from "../ERC1967/ERC1967Utils.sol"; /** * @dev An upgradeability mechanism designed for UUPS proxies. The functions included here can perform an upgrade of an * {ERC1967Proxy}, when this contract is set as the implementation behind such a proxy. * * A security mechanism ensures that an upgrade does not turn off upgradeability accidentally, although this risk is * reinstated if the upgrade retains upgradeability but removes the security mechanism, e.g. by replacing * `UUPSUpgradeable` with a custom implementation of upgrades. * * The {_authorizeUpgrade} function must be overridden to include access restriction to the upgrade mechanism. */ abstract contract UUPSUpgradeable is IERC1822Proxiable { /// @custom:oz-upgrades-unsafe-allow state-variable-immutable address private immutable __self = address(this); /** * @dev The version of the upgrade interface of the contract. If this getter is missing, both `upgradeTo(address)` * and `upgradeToAndCall(address,bytes)` are present, and `upgradeTo` must be used if no function should be called, * while `upgradeToAndCall` will invoke the `receive` function if the second argument is the empty byte string. * If the getter returns `"5.0.0"`, only `upgradeToAndCall(address,bytes)` is present, and the second argument must * be the empty byte string if no function should be called, making it impossible to invoke the `receive` function * during an upgrade. */ string public constant UPGRADE_INTERFACE_VERSION = "5.0.0"; /** * @dev The call is from an unauthorized context. */ error UUPSUnauthorizedCallContext(); /** * @dev The storage `slot` is unsupported as a UUID. */ error UUPSUnsupportedProxiableUUID(bytes32 slot); /** * @dev Check that the execution is being performed through a delegatecall call and that the execution context is * a proxy contract with an implementation (as defined in ERC-1967) pointing to self. This should only be the case * for UUPS and transparent proxies that are using the current contract as their implementation. Execution of a * function through ERC-1167 minimal proxies (clones) would not normally pass this test, but is not guaranteed to * fail. */ modifier onlyProxy() { _checkProxy(); _; } /** * @dev Check that the execution is not being performed through a delegate call. This allows a function to be * callable on the implementing contract but not through proxies. */ modifier notDelegated() { _checkNotDelegated(); _; } /** * @dev Implementation of the ERC-1822 {proxiableUUID} function. This returns the storage slot used by the * implementation. It is used to validate the implementation's compatibility when performing an upgrade. * * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this * function revert if invoked through a proxy. This is guaranteed by the `notDelegated` modifier. */ function proxiableUUID() external view virtual notDelegated returns (bytes32) { return ERC1967Utils.IMPLEMENTATION_SLOT; } /** * @dev Upgrade the implementation of the proxy to `newImplementation`, and subsequently execute the function call * encoded in `data`. * * Calls {_authorizeUpgrade}. * * Emits an {Upgraded} event. * * @custom:oz-upgrades-unsafe-allow-reachable delegatecall */ function upgradeToAndCall(address newImplementation, bytes memory data) public payable virtual onlyProxy { _authorizeUpgrade(newImplementation); _upgradeToAndCallUUPS(newImplementation, data); } /** * @dev Reverts if the execution is not performed via delegatecall or the execution * context is not of a proxy with an ERC-1967 compliant implementation pointing to self. * See {_onlyProxy}. */ function _checkProxy() internal view virtual { if ( address(this) == __self || // Must be called through delegatecall ERC1967Utils.getImplementation() != __self // Must be called through an active proxy ) { revert UUPSUnauthorizedCallContext(); } } /** * @dev Reverts if the execution is performed via delegatecall. * See {notDelegated}. */ function _checkNotDelegated() internal view virtual { if (address(this) != __self) { // Must not be called through delegatecall revert UUPSUnauthorizedCallContext(); } } /** * @dev Function that should revert when `msg.sender` is not authorized to upgrade the contract. Called by * {upgradeToAndCall}. * * Normally, this function will use an xref:access.adoc[access control] modifier such as {Ownable-onlyOwner}. * * ```solidity * function _authorizeUpgrade(address) internal onlyOwner {} * ``` */ function _authorizeUpgrade(address newImplementation) internal virtual; /** * @dev Performs an implementation upgrade with a security check for UUPS proxies, and additional setup call. * * As a security check, {proxiableUUID} is invoked in the new implementation, and the return value * is expected to be the implementation slot in ERC-1967. * * Emits an {IERC1967-Upgraded} event. */ function _upgradeToAndCallUUPS(address newImplementation, bytes memory data) private { try IERC1822Proxiable(newImplementation).proxiableUUID() returns (bytes32 slot) { if (slot != ERC1967Utils.IMPLEMENTATION_SLOT) { revert UUPSUnsupportedProxiableUUID(slot); } ERC1967Utils.upgradeToAndCall(newImplementation, data); } catch { // The implementation is not UUPS revert ERC1967Utils.ERC1967InvalidImplementation(newImplementation); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC1155/IERC1155Receiver.sol) pragma solidity ^0.8.20; import {IERC165} from "../../utils/introspection/IERC165.sol"; /** * @dev Interface that must be implemented by smart contracts in order to receive * ERC-1155 token transfers. */ interface IERC1155Receiver is IERC165 { /** * @dev Handles the receipt of a single ERC-1155 token type. This function is * called at the end of a `safeTransferFrom` after the balance has been updated. * * NOTE: To accept the transfer, this must return * `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))` * (i.e. 0xf23a6e61, or its own function selector). * * @param operator The address which initiated the transfer (i.e. msg.sender) * @param from The address which previously owned the token * @param id The ID of the token being transferred * @param value The amount of tokens being transferred * @param data Additional data with no specified format * @return `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))` if transfer is allowed */ function onERC1155Received( address operator, address from, uint256 id, uint256 value, bytes calldata data ) external returns (bytes4); /** * @dev Handles the receipt of a multiple ERC-1155 token types. This function * is called at the end of a `safeBatchTransferFrom` after the balances have * been updated. * * NOTE: To accept the transfer(s), this must return * `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))` * (i.e. 0xbc197c81, or its own function selector). * * @param operator The address which initiated the batch transfer (i.e. msg.sender) * @param from The address which previously owned the token * @param ids An array containing ids of each token being transferred (order and length must match values array) * @param values An array containing amounts of each token being transferred (order and length must match ids array) * @param data Additional data with no specified format * @return `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))` if transfer is allowed */ function onERC1155BatchReceived( address operator, address from, uint256[] calldata ids, uint256[] calldata values, bytes calldata data ) external returns (bytes4); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC721/IERC721Receiver.sol) pragma solidity ^0.8.20; /** * @title ERC-721 token receiver interface * @dev Interface for any contract that wants to support safeTransfers * from ERC-721 asset contracts. */ interface IERC721Receiver { /** * @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom} * by `operator` from `from`, this function is called. * * It must return its Solidity selector to confirm the token transfer. * If any other value is returned or the interface is not implemented by the recipient, the transfer will be * reverted. * * The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`. */ function onERC721Received( address operator, address from, uint256 tokenId, bytes calldata data ) external returns (bytes4); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/Address.sol) pragma solidity ^0.8.20; import {Errors} from "./Errors.sol"; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev There's no code at `target` (it is not a contract). */ error AddressEmptyCode(address target); /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { if (address(this).balance < amount) { revert Errors.InsufficientBalance(address(this).balance, amount); } (bool success, ) = recipient.call{value: amount}(""); if (!success) { revert Errors.FailedCall(); } } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason or custom error, it is bubbled * up by this function (like regular Solidity function calls). However, if * the call reverted with no returned reason, this function reverts with a * {Errors.FailedCall} error. * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { if (address(this).balance < value) { revert Errors.InsufficientBalance(address(this).balance, value); } (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target * was not a contract or bubbling up the revert reason (falling back to {Errors.FailedCall}) in case * of an unsuccessful call. */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata ) internal view returns (bytes memory) { if (!success) { _revert(returndata); } else { // only check if target is a contract if the call was successful and the return data is empty // otherwise we already know that it was a contract if (returndata.length == 0 && target.code.length == 0) { revert AddressEmptyCode(target); } return returndata; } } /** * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the * revert reason or with a default {Errors.FailedCall} error. */ function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) { if (!success) { _revert(returndata); } else { return returndata; } } /** * @dev Reverts with returndata if present. Otherwise reverts with {Errors.FailedCall}. */ function _revert(bytes memory returndata) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly assembly ("memory-safe") { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert Errors.FailedCall(); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/Errors.sol) pragma solidity ^0.8.20; /** * @dev Collection of common custom errors used in multiple contracts * * IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library. * It is recommended to avoid relying on the error API for critical functionality. * * _Available since v5.1._ */ library Errors { /** * @dev The ETH balance of the account is not enough to perform the operation. */ error InsufficientBalance(uint256 balance, uint256 needed); /** * @dev A call to an address target failed. The target may have reverted. */ error FailedCall(); /** * @dev The deployment failed. */ error FailedDeployment(); /** * @dev A necessary precompile is missing. */ error MissingPrecompile(address); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol) pragma solidity ^0.8.20; /** * @dev Helper library for emitting standardized panic codes. * * ```solidity * contract Example { * using Panic for uint256; * * // Use any of the declared internal constants * function foo() { Panic.GENERIC.panic(); } * * // Alternatively * function foo() { Panic.panic(Panic.GENERIC); } * } * ``` * * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil]. * * _Available since v5.1._ */ // slither-disable-next-line unused-state library Panic { /// @dev generic / unspecified error uint256 internal constant GENERIC = 0x00; /// @dev used by the assert() builtin uint256 internal constant ASSERT = 0x01; /// @dev arithmetic underflow or overflow uint256 internal constant UNDER_OVERFLOW = 0x11; /// @dev division or modulo by zero uint256 internal constant DIVISION_BY_ZERO = 0x12; /// @dev enum conversion error uint256 internal constant ENUM_CONVERSION_ERROR = 0x21; /// @dev invalid encoding in storage uint256 internal constant STORAGE_ENCODING_ERROR = 0x22; /// @dev empty array pop uint256 internal constant EMPTY_ARRAY_POP = 0x31; /// @dev array out of bounds access uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32; /// @dev resource error (too large allocation or too large array) uint256 internal constant RESOURCE_ERROR = 0x41; /// @dev calling invalid internal function uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51; /// @dev Reverts with a panic code. Recommended to use with /// the internal constants with predefined codes. function panic(uint256 code) internal pure { assembly ("memory-safe") { mstore(0x00, 0x4e487b71) mstore(0x20, code) revert(0x1c, 0x24) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol) // This file was procedurally generated from scripts/generate/templates/StorageSlot.js. pragma solidity ^0.8.20; /** * @dev Library for reading and writing primitive types to specific storage slots. * * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts. * This library helps with reading and writing to such slots without the need for inline assembly. * * The functions in this library return Slot structs that contain a `value` member that can be used to read or write. * * Example usage to set ERC-1967 implementation slot: * ```solidity * contract ERC1967 { * // Define the slot. Alternatively, use the SlotDerivation library to derive the slot. * bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; * * function _getImplementation() internal view returns (address) { * return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value; * } * * function _setImplementation(address newImplementation) internal { * require(newImplementation.code.length > 0); * StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; * } * } * ``` * * TIP: Consider using this library along with {SlotDerivation}. */ library StorageSlot { struct AddressSlot { address value; } struct BooleanSlot { bool value; } struct Bytes32Slot { bytes32 value; } struct Uint256Slot { uint256 value; } struct Int256Slot { int256 value; } struct StringSlot { string value; } struct BytesSlot { bytes value; } /** * @dev Returns an `AddressSlot` with member `value` located at `slot`. */ function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns a `BooleanSlot` with member `value` located at `slot`. */ function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns a `Bytes32Slot` with member `value` located at `slot`. */ function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns a `Uint256Slot` with member `value` located at `slot`. */ function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns a `Int256Slot` with member `value` located at `slot`. */ function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns a `StringSlot` with member `value` located at `slot`. */ function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns an `StringSlot` representation of the string storage pointer `store`. */ function getStringSlot(string storage store) internal pure returns (StringSlot storage r) { assembly ("memory-safe") { r.slot := store.slot } } /** * @dev Returns a `BytesSlot` with member `value` located at `slot`. */ function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`. */ function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) { assembly ("memory-safe") { r.slot := store.slot } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/Strings.sol) pragma solidity ^0.8.20; import {Math} from "./math/Math.sol"; import {SignedMath} from "./math/SignedMath.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant HEX_DIGITS = "0123456789abcdef"; uint8 private constant ADDRESS_LENGTH = 20; /** * @dev The `value` string doesn't fit in the specified `length`. */ error StringsInsufficientHexLength(uint256 value, uint256 length); /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; assembly ("memory-safe") { ptr := add(buffer, add(32, length)) } while (true) { ptr--; assembly ("memory-safe") { mstore8(ptr, byte(mod(value, 10), HEX_DIGITS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toStringSigned(int256 value) internal pure returns (string memory) { return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { uint256 localValue = value; bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = HEX_DIGITS[localValue & 0xf]; localValue >>= 4; } if (localValue != 0) { revert StringsInsufficientHexLength(value, length); } return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal * representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH); } /** * @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal * representation, according to EIP-55. */ function toChecksumHexString(address addr) internal pure returns (string memory) { bytes memory buffer = bytes(toHexString(addr)); // hash the hex part of buffer (skip length + 2 bytes, length 40) uint256 hashValue; assembly ("memory-safe") { hashValue := shr(96, keccak256(add(buffer, 0x22), 40)) } for (uint256 i = 41; i > 1; --i) { // possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f) if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) { // case shift by xoring with 0x20 buffer[i] ^= 0x20; } hashValue >>= 4; } return string(buffer); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/ECDSA.sol) pragma solidity ^0.8.20; /** * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations. * * These functions can be used to verify that a message was signed by the holder * of the private keys of a given address. */ library ECDSA { enum RecoverError { NoError, InvalidSignature, InvalidSignatureLength, InvalidSignatureS } /** * @dev The signature derives the `address(0)`. */ error ECDSAInvalidSignature(); /** * @dev The signature has an invalid length. */ error ECDSAInvalidSignatureLength(uint256 length); /** * @dev The signature has an S value that is in the upper half order. */ error ECDSAInvalidSignatureS(bytes32 s); /** * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not * return address(0) without also returning an error description. Errors are documented using an enum (error type) * and a bytes32 providing additional information about the error. * * If no error is returned, then the address can be used for verification purposes. * * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it. * * Documentation for signature generation: * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js] * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers] */ function tryRecover( bytes32 hash, bytes memory signature ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) { if (signature.length == 65) { bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. assembly ("memory-safe") { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return tryRecover(hash, v, r, s); } else { return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length)); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature`. This address can then be used for verification purposes. * * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it. */ function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature); _throwError(error, errorArg); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately. * * See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures] */ function tryRecover( bytes32 hash, bytes32 r, bytes32 vs ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) { unchecked { bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff); // We do not check for an overflow here since the shift operation results in 0 or 1. uint8 v = uint8((uint256(vs) >> 255) + 27); return tryRecover(hash, v, r, s); } } /** * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately. */ function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs); _throwError(error, errorArg); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `v`, * `r` and `s` signature fields separately. */ function tryRecover( bytes32 hash, uint8 v, bytes32 r, bytes32 s ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) { // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) { return (address(0), RecoverError.InvalidSignatureS, s); } // If the signature is valid (and not malleable), return the signer address address signer = ecrecover(hash, v, r, s); if (signer == address(0)) { return (address(0), RecoverError.InvalidSignature, bytes32(0)); } return (signer, RecoverError.NoError, bytes32(0)); } /** * @dev Overload of {ECDSA-recover} that receives the `v`, * `r` and `s` signature fields separately. */ function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s); _throwError(error, errorArg); return recovered; } /** * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided. */ function _throwError(RecoverError error, bytes32 errorArg) private pure { if (error == RecoverError.NoError) { return; // no error: do nothing } else if (error == RecoverError.InvalidSignature) { revert ECDSAInvalidSignature(); } else if (error == RecoverError.InvalidSignatureLength) { revert ECDSAInvalidSignatureLength(uint256(errorArg)); } else if (error == RecoverError.InvalidSignatureS) { revert ECDSAInvalidSignatureS(errorArg); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/MessageHashUtils.sol) pragma solidity ^0.8.20; import {Strings} from "../Strings.sol"; /** * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing. * * The library provides methods for generating a hash of a message that conforms to the * https://eips.ethereum.org/EIPS/eip-191[ERC-191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712] * specifications. */ library MessageHashUtils { /** * @dev Returns the keccak256 digest of an ERC-191 signed data with version * `0x45` (`personal_sign` messages). * * The digest is calculated by prefixing a bytes32 `messageHash` with * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method. * * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with * keccak256, although any bytes32 value can be safely used because the final digest will * be re-hashed. * * See {ECDSA-recover}. */ function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) { assembly ("memory-safe") { mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20) } } /** * @dev Returns the keccak256 digest of an ERC-191 signed data with version * `0x45` (`personal_sign` messages). * * The digest is calculated by prefixing an arbitrary `message` with * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method. * * See {ECDSA-recover}. */ function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) { return keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message)); } /** * @dev Returns the keccak256 digest of an ERC-191 signed data with version * `0x00` (data with intended validator). * * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended * `validator` address. Then hashing the result. * * See {ECDSA-recover}. */ function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) { return keccak256(abi.encodePacked(hex"19_00", validator, data)); } /** * @dev Returns the keccak256 digest of an EIP-712 typed data (ERC-191 version `0x01`). * * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with * `\x19\x01` and hashing the result. It corresponds to the hash signed by the * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712. * * See {ECDSA-recover}. */ function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) { assembly ("memory-safe") { let ptr := mload(0x40) mstore(ptr, hex"19_01") mstore(add(ptr, 0x02), domainSeparator) mstore(add(ptr, 0x22), structHash) digest := keccak256(ptr, 0x42) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC-165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[ERC]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol) pragma solidity ^0.8.20; import {Panic} from "../Panic.sol"; import {SafeCast} from "./SafeCast.sol"; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Floor, // Toward negative infinity Ceil, // Toward positive infinity Trunc, // Toward zero Expand // Away from zero } /** * @dev Returns the addition of two unsigned integers, with an success flag (no overflow). */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow). */ function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow). */ function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a success flag (no division by zero). */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero). */ function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant. * * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone. * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute * one branch when needed, making this function more expensive. */ function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) { unchecked { // branchless ternary works because: // b ^ (a ^ b) == a // b ^ 0 == b return b ^ ((a ^ b) * SafeCast.toUint(condition)); } } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return ternary(a > b, a, b); } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return ternary(a < b, a, b); } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds towards infinity instead * of rounding towards zero. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { // Guarantee the same behavior as in a regular Solidity division. Panic.panic(Panic.DIVISION_BY_ZERO); } // The following calculation ensures accurate ceiling division without overflow. // Since a is non-zero, (a - 1) / b will not overflow. // The largest possible result occurs when (a - 1) / b is type(uint256).max, // but the largest value we can obtain is type(uint256).max - 1, which happens // when a = type(uint256).max and b = 1. unchecked { return SafeCast.toUint(a > 0) * ((a - 1) / b + 1); } } /** * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or * denominator == 0. * * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by * Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2²⁵⁶ + prod0. uint256 prod0 = x * y; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0. if (denominator <= prod1) { Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW)); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363. uint256 twos = denominator & (0 - denominator); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv ≡ 1 mod 2⁴. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also // works in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2⁸ inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶ inverse *= 2 - denominator * inverse; // inverse mod 2³² inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴ inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸ inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶ // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @dev Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0); } /** * @dev Calculate the modular multiplicative inverse of a number in Z/nZ. * * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0. * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible. * * If the input value is not inversible, 0 is returned. * * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}. */ function invMod(uint256 a, uint256 n) internal pure returns (uint256) { unchecked { if (n == 0) return 0; // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version) // Used to compute integers x and y such that: ax + ny = gcd(a, n). // When the gcd is 1, then the inverse of a modulo n exists and it's x. // ax + ny = 1 // ax = 1 + (-y)n // ax ≡ 1 (mod n) # x is the inverse of a modulo n // If the remainder is 0 the gcd is n right away. uint256 remainder = a % n; uint256 gcd = n; // Therefore the initial coefficients are: // ax + ny = gcd(a, n) = n // 0a + 1n = n int256 x = 0; int256 y = 1; while (remainder != 0) { uint256 quotient = gcd / remainder; (gcd, remainder) = ( // The old remainder is the next gcd to try. remainder, // Compute the next remainder. // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd // where gcd is at most n (capped to type(uint256).max) gcd - remainder * quotient ); (x, y) = ( // Increment the coefficient of a. y, // Decrement the coefficient of n. // Can overflow, but the result is casted to uint256 so that the // next value of y is "wrapped around" to a value between 0 and n - 1. x - y * int256(quotient) ); } if (gcd != 1) return 0; // No inverse exists. return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative. } } /** * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`. * * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that * `a**(p-2)` is the modular multiplicative inverse of a in Fp. * * NOTE: this function does NOT check that `p` is a prime greater than `2`. */ function invModPrime(uint256 a, uint256 p) internal view returns (uint256) { unchecked { return Math.modExp(a, p - 2, p); } } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m) * * Requirements: * - modulus can't be zero * - underlying staticcall to precompile must succeed * * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make * sure the chain you're using it on supports the precompiled contract for modular exponentiation * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, * the underlying function will succeed given the lack of a revert, but the result may be incorrectly * interpreted as 0. */ function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) { (bool success, uint256 result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m). * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying * to operate modulo 0 or if the underlying precompile reverted. * * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack * of a revert, but the result may be incorrectly interpreted as 0. */ function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) { if (m == 0) return (false, 0); assembly ("memory-safe") { let ptr := mload(0x40) // | Offset | Content | Content (Hex) | // |-----------|------------|--------------------------------------------------------------------| // | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x60:0x7f | value of b | 0x<.............................................................b> | // | 0x80:0x9f | value of e | 0x<.............................................................e> | // | 0xa0:0xbf | value of m | 0x<.............................................................m> | mstore(ptr, 0x20) mstore(add(ptr, 0x20), 0x20) mstore(add(ptr, 0x40), 0x20) mstore(add(ptr, 0x60), b) mstore(add(ptr, 0x80), e) mstore(add(ptr, 0xa0), m) // Given the result < m, it's guaranteed to fit in 32 bytes, // so we can use the memory scratch space located at offset 0. success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20) result := mload(0x00) } } /** * @dev Variant of {modExp} that supports inputs of arbitrary length. */ function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) { (bool success, bytes memory result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Variant of {tryModExp} that supports inputs of arbitrary length. */ function tryModExp( bytes memory b, bytes memory e, bytes memory m ) internal view returns (bool success, bytes memory result) { if (_zeroBytes(m)) return (false, new bytes(0)); uint256 mLen = m.length; // Encode call args in result and move the free memory pointer result = abi.encodePacked(b.length, e.length, mLen, b, e, m); assembly ("memory-safe") { let dataPtr := add(result, 0x20) // Write result on top of args to avoid allocating extra memory. success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen) // Overwrite the length. // result.length > returndatasize() is guaranteed because returndatasize() == m.length mstore(result, mLen) // Set the memory pointer after the returned data. mstore(0x40, add(dataPtr, mLen)) } } /** * @dev Returns whether the provided byte array is zero. */ function _zeroBytes(bytes memory byteArray) private pure returns (bool) { for (uint256 i = 0; i < byteArray.length; ++i) { if (byteArray[i] != 0) { return false; } } return true; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded * towards zero. * * This method is based on Newton's method for computing square roots; the algorithm is restricted to only * using integer operations. */ function sqrt(uint256 a) internal pure returns (uint256) { unchecked { // Take care of easy edge cases when a == 0 or a == 1 if (a <= 1) { return a; } // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between // the current value as `ε_n = | x_n - sqrt(a) |`. // // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is // bigger than any uint256. // // By noticing that // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)` // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar // to the msb function. uint256 aa = a; uint256 xn = 1; if (aa >= (1 << 128)) { aa >>= 128; xn <<= 64; } if (aa >= (1 << 64)) { aa >>= 64; xn <<= 32; } if (aa >= (1 << 32)) { aa >>= 32; xn <<= 16; } if (aa >= (1 << 16)) { aa >>= 16; xn <<= 8; } if (aa >= (1 << 8)) { aa >>= 8; xn <<= 4; } if (aa >= (1 << 4)) { aa >>= 4; xn <<= 2; } if (aa >= (1 << 2)) { xn <<= 1; } // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1). // // We can refine our estimation by noticing that the middle of that interval minimizes the error. // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2). // This is going to be our x_0 (and ε_0) xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2) // From here, Newton's method give us: // x_{n+1} = (x_n + a / x_n) / 2 // // One should note that: // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a // = ((x_n² + a) / (2 * x_n))² - a // = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a // = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²) // = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²) // = (x_n² - a)² / (2 * x_n)² // = ((x_n² - a) / (2 * x_n))² // ≥ 0 // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n // // This gives us the proof of quadratic convergence of the sequence: // ε_{n+1} = | x_{n+1} - sqrt(a) | // = | (x_n + a / x_n) / 2 - sqrt(a) | // = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) | // = | (x_n - sqrt(a))² / (2 * x_n) | // = | ε_n² / (2 * x_n) | // = ε_n² / | (2 * x_n) | // // For the first iteration, we have a special case where x_0 is known: // ε_1 = ε_0² / | (2 * x_0) | // ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2))) // ≤ 2**(2*e-4) / (3 * 2**(e-1)) // ≤ 2**(e-3) / 3 // ≤ 2**(e-3-log2(3)) // ≤ 2**(e-4.5) // // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n: // ε_{n+1} = ε_n² / | (2 * x_n) | // ≤ (2**(e-k))² / (2 * 2**(e-1)) // ≤ 2**(2*e-2*k) / 2**e // ≤ 2**(e-2*k) xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5 xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9 xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18 xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36 xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72 // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either // sqrt(a) or sqrt(a) + 1. return xn - SafeCast.toUint(xn > a / xn); } } /** * @dev Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a); } } /** * @dev Return the log in base 2 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; uint256 exp; unchecked { exp = 128 * SafeCast.toUint(value > (1 << 128) - 1); value >>= exp; result += exp; exp = 64 * SafeCast.toUint(value > (1 << 64) - 1); value >>= exp; result += exp; exp = 32 * SafeCast.toUint(value > (1 << 32) - 1); value >>= exp; result += exp; exp = 16 * SafeCast.toUint(value > (1 << 16) - 1); value >>= exp; result += exp; exp = 8 * SafeCast.toUint(value > (1 << 8) - 1); value >>= exp; result += exp; exp = 4 * SafeCast.toUint(value > (1 << 4) - 1); value >>= exp; result += exp; exp = 2 * SafeCast.toUint(value > (1 << 2) - 1); value >>= exp; result += exp; result += SafeCast.toUint(value > 1); } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value); } } /** * @dev Return the log in base 10 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value); } } /** * @dev Return the log in base 256 of a positive value rounded towards zero. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; uint256 isGt; unchecked { isGt = SafeCast.toUint(value > (1 << 128) - 1); value >>= isGt * 128; result += isGt * 16; isGt = SafeCast.toUint(value > (1 << 64) - 1); value >>= isGt * 64; result += isGt * 8; isGt = SafeCast.toUint(value > (1 << 32) - 1); value >>= isGt * 32; result += isGt * 4; isGt = SafeCast.toUint(value > (1 << 16) - 1); value >>= isGt * 16; result += isGt * 2; result += SafeCast.toUint(value > (1 << 8) - 1); } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value); } } /** * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers. */ function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) { return uint8(rounding) % 2 == 1; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol) // This file was procedurally generated from scripts/generate/templates/SafeCast.js. pragma solidity ^0.8.20; /** * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow * checks. * * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can * easily result in undesired exploitation or bugs, since developers usually * assume that overflows raise errors. `SafeCast` restores this intuition by * reverting the transaction when such an operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeCast { /** * @dev Value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value); /** * @dev An int value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedIntToUint(int256 value); /** * @dev Value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedIntDowncast(uint8 bits, int256 value); /** * @dev An uint value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedUintToInt(uint256 value); /** * @dev Returns the downcasted uint248 from uint256, reverting on * overflow (when the input is greater than largest uint248). * * Counterpart to Solidity's `uint248` operator. * * Requirements: * * - input must fit into 248 bits */ function toUint248(uint256 value) internal pure returns (uint248) { if (value > type(uint248).max) { revert SafeCastOverflowedUintDowncast(248, value); } return uint248(value); } /** * @dev Returns the downcasted uint240 from uint256, reverting on * overflow (when the input is greater than largest uint240). * * Counterpart to Solidity's `uint240` operator. * * Requirements: * * - input must fit into 240 bits */ function toUint240(uint256 value) internal pure returns (uint240) { if (value > type(uint240).max) { revert SafeCastOverflowedUintDowncast(240, value); } return uint240(value); } /** * @dev Returns the downcasted uint232 from uint256, reverting on * overflow (when the input is greater than largest uint232). * * Counterpart to Solidity's `uint232` operator. * * Requirements: * * - input must fit into 232 bits */ function toUint232(uint256 value) internal pure returns (uint232) { if (value > type(uint232).max) { revert SafeCastOverflowedUintDowncast(232, value); } return uint232(value); } /** * @dev Returns the downcasted uint224 from uint256, reverting on * overflow (when the input is greater than largest uint224). * * Counterpart to Solidity's `uint224` operator. * * Requirements: * * - input must fit into 224 bits */ function toUint224(uint256 value) internal pure returns (uint224) { if (value > type(uint224).max) { revert SafeCastOverflowedUintDowncast(224, value); } return uint224(value); } /** * @dev Returns the downcasted uint216 from uint256, reverting on * overflow (when the input is greater than largest uint216). * * Counterpart to Solidity's `uint216` operator. * * Requirements: * * - input must fit into 216 bits */ function toUint216(uint256 value) internal pure returns (uint216) { if (value > type(uint216).max) { revert SafeCastOverflowedUintDowncast(216, value); } return uint216(value); } /** * @dev Returns the downcasted uint208 from uint256, reverting on * overflow (when the input is greater than largest uint208). * * Counterpart to Solidity's `uint208` operator. * * Requirements: * * - input must fit into 208 bits */ function toUint208(uint256 value) internal pure returns (uint208) { if (value > type(uint208).max) { revert SafeCastOverflowedUintDowncast(208, value); } return uint208(value); } /** * @dev Returns the downcasted uint200 from uint256, reverting on * overflow (when the input is greater than largest uint200). * * Counterpart to Solidity's `uint200` operator. * * Requirements: * * - input must fit into 200 bits */ function toUint200(uint256 value) internal pure returns (uint200) { if (value > type(uint200).max) { revert SafeCastOverflowedUintDowncast(200, value); } return uint200(value); } /** * @dev Returns the downcasted uint192 from uint256, reverting on * overflow (when the input is greater than largest uint192). * * Counterpart to Solidity's `uint192` operator. * * Requirements: * * - input must fit into 192 bits */ function toUint192(uint256 value) internal pure returns (uint192) { if (value > type(uint192).max) { revert SafeCastOverflowedUintDowncast(192, value); } return uint192(value); } /** * @dev Returns the downcasted uint184 from uint256, reverting on * overflow (when the input is greater than largest uint184). * * Counterpart to Solidity's `uint184` operator. * * Requirements: * * - input must fit into 184 bits */ function toUint184(uint256 value) internal pure returns (uint184) { if (value > type(uint184).max) { revert SafeCastOverflowedUintDowncast(184, value); } return uint184(value); } /** * @dev Returns the downcasted uint176 from uint256, reverting on * overflow (when the input is greater than largest uint176). * * Counterpart to Solidity's `uint176` operator. * * Requirements: * * - input must fit into 176 bits */ function toUint176(uint256 value) internal pure returns (uint176) { if (value > type(uint176).max) { revert SafeCastOverflowedUintDowncast(176, value); } return uint176(value); } /** * @dev Returns the downcasted uint168 from uint256, reverting on * overflow (when the input is greater than largest uint168). * * Counterpart to Solidity's `uint168` operator. * * Requirements: * * - input must fit into 168 bits */ function toUint168(uint256 value) internal pure returns (uint168) { if (value > type(uint168).max) { revert SafeCastOverflowedUintDowncast(168, value); } return uint168(value); } /** * @dev Returns the downcasted uint160 from uint256, reverting on * overflow (when the input is greater than largest uint160). * * Counterpart to Solidity's `uint160` operator. * * Requirements: * * - input must fit into 160 bits */ function toUint160(uint256 value) internal pure returns (uint160) { if (value > type(uint160).max) { revert SafeCastOverflowedUintDowncast(160, value); } return uint160(value); } /** * @dev Returns the downcasted uint152 from uint256, reverting on * overflow (when the input is greater than largest uint152). * * Counterpart to Solidity's `uint152` operator. * * Requirements: * * - input must fit into 152 bits */ function toUint152(uint256 value) internal pure returns (uint152) { if (value > type(uint152).max) { revert SafeCastOverflowedUintDowncast(152, value); } return uint152(value); } /** * @dev Returns the downcasted uint144 from uint256, reverting on * overflow (when the input is greater than largest uint144). * * Counterpart to Solidity's `uint144` operator. * * Requirements: * * - input must fit into 144 bits */ function toUint144(uint256 value) internal pure returns (uint144) { if (value > type(uint144).max) { revert SafeCastOverflowedUintDowncast(144, value); } return uint144(value); } /** * @dev Returns the downcasted uint136 from uint256, reverting on * overflow (when the input is greater than largest uint136). * * Counterpart to Solidity's `uint136` operator. * * Requirements: * * - input must fit into 136 bits */ function toUint136(uint256 value) internal pure returns (uint136) { if (value > type(uint136).max) { revert SafeCastOverflowedUintDowncast(136, value); } return uint136(value); } /** * @dev Returns the downcasted uint128 from uint256, reverting on * overflow (when the input is greater than largest uint128). * * Counterpart to Solidity's `uint128` operator. * * Requirements: * * - input must fit into 128 bits */ function toUint128(uint256 value) internal pure returns (uint128) { if (value > type(uint128).max) { revert SafeCastOverflowedUintDowncast(128, value); } return uint128(value); } /** * @dev Returns the downcasted uint120 from uint256, reverting on * overflow (when the input is greater than largest uint120). * * Counterpart to Solidity's `uint120` operator. * * Requirements: * * - input must fit into 120 bits */ function toUint120(uint256 value) internal pure returns (uint120) { if (value > type(uint120).max) { revert SafeCastOverflowedUintDowncast(120, value); } return uint120(value); } /** * @dev Returns the downcasted uint112 from uint256, reverting on * overflow (when the input is greater than largest uint112). * * Counterpart to Solidity's `uint112` operator. * * Requirements: * * - input must fit into 112 bits */ function toUint112(uint256 value) internal pure returns (uint112) { if (value > type(uint112).max) { revert SafeCastOverflowedUintDowncast(112, value); } return uint112(value); } /** * @dev Returns the downcasted uint104 from uint256, reverting on * overflow (when the input is greater than largest uint104). * * Counterpart to Solidity's `uint104` operator. * * Requirements: * * - input must fit into 104 bits */ function toUint104(uint256 value) internal pure returns (uint104) { if (value > type(uint104).max) { revert SafeCastOverflowedUintDowncast(104, value); } return uint104(value); } /** * @dev Returns the downcasted uint96 from uint256, reverting on * overflow (when the input is greater than largest uint96). * * Counterpart to Solidity's `uint96` operator. * * Requirements: * * - input must fit into 96 bits */ function toUint96(uint256 value) internal pure returns (uint96) { if (value > type(uint96).max) { revert SafeCastOverflowedUintDowncast(96, value); } return uint96(value); } /** * @dev Returns the downcasted uint88 from uint256, reverting on * overflow (when the input is greater than largest uint88). * * Counterpart to Solidity's `uint88` operator. * * Requirements: * * - input must fit into 88 bits */ function toUint88(uint256 value) internal pure returns (uint88) { if (value > type(uint88).max) { revert SafeCastOverflowedUintDowncast(88, value); } return uint88(value); } /** * @dev Returns the downcasted uint80 from uint256, reverting on * overflow (when the input is greater than largest uint80). * * Counterpart to Solidity's `uint80` operator. * * Requirements: * * - input must fit into 80 bits */ function toUint80(uint256 value) internal pure returns (uint80) { if (value > type(uint80).max) { revert SafeCastOverflowedUintDowncast(80, value); } return uint80(value); } /** * @dev Returns the downcasted uint72 from uint256, reverting on * overflow (when the input is greater than largest uint72). * * Counterpart to Solidity's `uint72` operator. * * Requirements: * * - input must fit into 72 bits */ function toUint72(uint256 value) internal pure returns (uint72) { if (value > type(uint72).max) { revert SafeCastOverflowedUintDowncast(72, value); } return uint72(value); } /** * @dev Returns the downcasted uint64 from uint256, reverting on * overflow (when the input is greater than largest uint64). * * Counterpart to Solidity's `uint64` operator. * * Requirements: * * - input must fit into 64 bits */ function toUint64(uint256 value) internal pure returns (uint64) { if (value > type(uint64).max) { revert SafeCastOverflowedUintDowncast(64, value); } return uint64(value); } /** * @dev Returns the downcasted uint56 from uint256, reverting on * overflow (when the input is greater than largest uint56). * * Counterpart to Solidity's `uint56` operator. * * Requirements: * * - input must fit into 56 bits */ function toUint56(uint256 value) internal pure returns (uint56) { if (value > type(uint56).max) { revert SafeCastOverflowedUintDowncast(56, value); } return uint56(value); } /** * @dev Returns the downcasted uint48 from uint256, reverting on * overflow (when the input is greater than largest uint48). * * Counterpart to Solidity's `uint48` operator. * * Requirements: * * - input must fit into 48 bits */ function toUint48(uint256 value) internal pure returns (uint48) { if (value > type(uint48).max) { revert SafeCastOverflowedUintDowncast(48, value); } return uint48(value); } /** * @dev Returns the downcasted uint40 from uint256, reverting on * overflow (when the input is greater than largest uint40). * * Counterpart to Solidity's `uint40` operator. * * Requirements: * * - input must fit into 40 bits */ function toUint40(uint256 value) internal pure returns (uint40) { if (value > type(uint40).max) { revert SafeCastOverflowedUintDowncast(40, value); } return uint40(value); } /** * @dev Returns the downcasted uint32 from uint256, reverting on * overflow (when the input is greater than largest uint32). * * Counterpart to Solidity's `uint32` operator. * * Requirements: * * - input must fit into 32 bits */ function toUint32(uint256 value) internal pure returns (uint32) { if (value > type(uint32).max) { revert SafeCastOverflowedUintDowncast(32, value); } return uint32(value); } /** * @dev Returns the downcasted uint24 from uint256, reverting on * overflow (when the input is greater than largest uint24). * * Counterpart to Solidity's `uint24` operator. * * Requirements: * * - input must fit into 24 bits */ function toUint24(uint256 value) internal pure returns (uint24) { if (value > type(uint24).max) { revert SafeCastOverflowedUintDowncast(24, value); } return uint24(value); } /** * @dev Returns the downcasted uint16 from uint256, reverting on * overflow (when the input is greater than largest uint16). * * Counterpart to Solidity's `uint16` operator. * * Requirements: * * - input must fit into 16 bits */ function toUint16(uint256 value) internal pure returns (uint16) { if (value > type(uint16).max) { revert SafeCastOverflowedUintDowncast(16, value); } return uint16(value); } /** * @dev Returns the downcasted uint8 from uint256, reverting on * overflow (when the input is greater than largest uint8). * * Counterpart to Solidity's `uint8` operator. * * Requirements: * * - input must fit into 8 bits */ function toUint8(uint256 value) internal pure returns (uint8) { if (value > type(uint8).max) { revert SafeCastOverflowedUintDowncast(8, value); } return uint8(value); } /** * @dev Converts a signed int256 into an unsigned uint256. * * Requirements: * * - input must be greater than or equal to 0. */ function toUint256(int256 value) internal pure returns (uint256) { if (value < 0) { revert SafeCastOverflowedIntToUint(value); } return uint256(value); } /** * @dev Returns the downcasted int248 from int256, reverting on * overflow (when the input is less than smallest int248 or * greater than largest int248). * * Counterpart to Solidity's `int248` operator. * * Requirements: * * - input must fit into 248 bits */ function toInt248(int256 value) internal pure returns (int248 downcasted) { downcasted = int248(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(248, value); } } /** * @dev Returns the downcasted int240 from int256, reverting on * overflow (when the input is less than smallest int240 or * greater than largest int240). * * Counterpart to Solidity's `int240` operator. * * Requirements: * * - input must fit into 240 bits */ function toInt240(int256 value) internal pure returns (int240 downcasted) { downcasted = int240(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(240, value); } } /** * @dev Returns the downcasted int232 from int256, reverting on * overflow (when the input is less than smallest int232 or * greater than largest int232). * * Counterpart to Solidity's `int232` operator. * * Requirements: * * - input must fit into 232 bits */ function toInt232(int256 value) internal pure returns (int232 downcasted) { downcasted = int232(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(232, value); } } /** * @dev Returns the downcasted int224 from int256, reverting on * overflow (when the input is less than smallest int224 or * greater than largest int224). * * Counterpart to Solidity's `int224` operator. * * Requirements: * * - input must fit into 224 bits */ function toInt224(int256 value) internal pure returns (int224 downcasted) { downcasted = int224(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(224, value); } } /** * @dev Returns the downcasted int216 from int256, reverting on * overflow (when the input is less than smallest int216 or * greater than largest int216). * * Counterpart to Solidity's `int216` operator. * * Requirements: * * - input must fit into 216 bits */ function toInt216(int256 value) internal pure returns (int216 downcasted) { downcasted = int216(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(216, value); } } /** * @dev Returns the downcasted int208 from int256, reverting on * overflow (when the input is less than smallest int208 or * greater than largest int208). * * Counterpart to Solidity's `int208` operator. * * Requirements: * * - input must fit into 208 bits */ function toInt208(int256 value) internal pure returns (int208 downcasted) { downcasted = int208(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(208, value); } } /** * @dev Returns the downcasted int200 from int256, reverting on * overflow (when the input is less than smallest int200 or * greater than largest int200). * * Counterpart to Solidity's `int200` operator. * * Requirements: * * - input must fit into 200 bits */ function toInt200(int256 value) internal pure returns (int200 downcasted) { downcasted = int200(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(200, value); } } /** * @dev Returns the downcasted int192 from int256, reverting on * overflow (when the input is less than smallest int192 or * greater than largest int192). * * Counterpart to Solidity's `int192` operator. * * Requirements: * * - input must fit into 192 bits */ function toInt192(int256 value) internal pure returns (int192 downcasted) { downcasted = int192(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(192, value); } } /** * @dev Returns the downcasted int184 from int256, reverting on * overflow (when the input is less than smallest int184 or * greater than largest int184). * * Counterpart to Solidity's `int184` operator. * * Requirements: * * - input must fit into 184 bits */ function toInt184(int256 value) internal pure returns (int184 downcasted) { downcasted = int184(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(184, value); } } /** * @dev Returns the downcasted int176 from int256, reverting on * overflow (when the input is less than smallest int176 or * greater than largest int176). * * Counterpart to Solidity's `int176` operator. * * Requirements: * * - input must fit into 176 bits */ function toInt176(int256 value) internal pure returns (int176 downcasted) { downcasted = int176(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(176, value); } } /** * @dev Returns the downcasted int168 from int256, reverting on * overflow (when the input is less than smallest int168 or * greater than largest int168). * * Counterpart to Solidity's `int168` operator. * * Requirements: * * - input must fit into 168 bits */ function toInt168(int256 value) internal pure returns (int168 downcasted) { downcasted = int168(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(168, value); } } /** * @dev Returns the downcasted int160 from int256, reverting on * overflow (when the input is less than smallest int160 or * greater than largest int160). * * Counterpart to Solidity's `int160` operator. * * Requirements: * * - input must fit into 160 bits */ function toInt160(int256 value) internal pure returns (int160 downcasted) { downcasted = int160(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(160, value); } } /** * @dev Returns the downcasted int152 from int256, reverting on * overflow (when the input is less than smallest int152 or * greater than largest int152). * * Counterpart to Solidity's `int152` operator. * * Requirements: * * - input must fit into 152 bits */ function toInt152(int256 value) internal pure returns (int152 downcasted) { downcasted = int152(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(152, value); } } /** * @dev Returns the downcasted int144 from int256, reverting on * overflow (when the input is less than smallest int144 or * greater than largest int144). * * Counterpart to Solidity's `int144` operator. * * Requirements: * * - input must fit into 144 bits */ function toInt144(int256 value) internal pure returns (int144 downcasted) { downcasted = int144(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(144, value); } } /** * @dev Returns the downcasted int136 from int256, reverting on * overflow (when the input is less than smallest int136 or * greater than largest int136). * * Counterpart to Solidity's `int136` operator. * * Requirements: * * - input must fit into 136 bits */ function toInt136(int256 value) internal pure returns (int136 downcasted) { downcasted = int136(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(136, value); } } /** * @dev Returns the downcasted int128 from int256, reverting on * overflow (when the input is less than smallest int128 or * greater than largest int128). * * Counterpart to Solidity's `int128` operator. * * Requirements: * * - input must fit into 128 bits */ function toInt128(int256 value) internal pure returns (int128 downcasted) { downcasted = int128(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(128, value); } } /** * @dev Returns the downcasted int120 from int256, reverting on * overflow (when the input is less than smallest int120 or * greater than largest int120). * * Counterpart to Solidity's `int120` operator. * * Requirements: * * - input must fit into 120 bits */ function toInt120(int256 value) internal pure returns (int120 downcasted) { downcasted = int120(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(120, value); } } /** * @dev Returns the downcasted int112 from int256, reverting on * overflow (when the input is less than smallest int112 or * greater than largest int112). * * Counterpart to Solidity's `int112` operator. * * Requirements: * * - input must fit into 112 bits */ function toInt112(int256 value) internal pure returns (int112 downcasted) { downcasted = int112(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(112, value); } } /** * @dev Returns the downcasted int104 from int256, reverting on * overflow (when the input is less than smallest int104 or * greater than largest int104). * * Counterpart to Solidity's `int104` operator. * * Requirements: * * - input must fit into 104 bits */ function toInt104(int256 value) internal pure returns (int104 downcasted) { downcasted = int104(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(104, value); } } /** * @dev Returns the downcasted int96 from int256, reverting on * overflow (when the input is less than smallest int96 or * greater than largest int96). * * Counterpart to Solidity's `int96` operator. * * Requirements: * * - input must fit into 96 bits */ function toInt96(int256 value) internal pure returns (int96 downcasted) { downcasted = int96(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(96, value); } } /** * @dev Returns the downcasted int88 from int256, reverting on * overflow (when the input is less than smallest int88 or * greater than largest int88). * * Counterpart to Solidity's `int88` operator. * * Requirements: * * - input must fit into 88 bits */ function toInt88(int256 value) internal pure returns (int88 downcasted) { downcasted = int88(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(88, value); } } /** * @dev Returns the downcasted int80 from int256, reverting on * overflow (when the input is less than smallest int80 or * greater than largest int80). * * Counterpart to Solidity's `int80` operator. * * Requirements: * * - input must fit into 80 bits */ function toInt80(int256 value) internal pure returns (int80 downcasted) { downcasted = int80(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(80, value); } } /** * @dev Returns the downcasted int72 from int256, reverting on * overflow (when the input is less than smallest int72 or * greater than largest int72). * * Counterpart to Solidity's `int72` operator. * * Requirements: * * - input must fit into 72 bits */ function toInt72(int256 value) internal pure returns (int72 downcasted) { downcasted = int72(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(72, value); } } /** * @dev Returns the downcasted int64 from int256, reverting on * overflow (when the input is less than smallest int64 or * greater than largest int64). * * Counterpart to Solidity's `int64` operator. * * Requirements: * * - input must fit into 64 bits */ function toInt64(int256 value) internal pure returns (int64 downcasted) { downcasted = int64(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(64, value); } } /** * @dev Returns the downcasted int56 from int256, reverting on * overflow (when the input is less than smallest int56 or * greater than largest int56). * * Counterpart to Solidity's `int56` operator. * * Requirements: * * - input must fit into 56 bits */ function toInt56(int256 value) internal pure returns (int56 downcasted) { downcasted = int56(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(56, value); } } /** * @dev Returns the downcasted int48 from int256, reverting on * overflow (when the input is less than smallest int48 or * greater than largest int48). * * Counterpart to Solidity's `int48` operator. * * Requirements: * * - input must fit into 48 bits */ function toInt48(int256 value) internal pure returns (int48 downcasted) { downcasted = int48(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(48, value); } } /** * @dev Returns the downcasted int40 from int256, reverting on * overflow (when the input is less than smallest int40 or * greater than largest int40). * * Counterpart to Solidity's `int40` operator. * * Requirements: * * - input must fit into 40 bits */ function toInt40(int256 value) internal pure returns (int40 downcasted) { downcasted = int40(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(40, value); } } /** * @dev Returns the downcasted int32 from int256, reverting on * overflow (when the input is less than smallest int32 or * greater than largest int32). * * Counterpart to Solidity's `int32` operator. * * Requirements: * * - input must fit into 32 bits */ function toInt32(int256 value) internal pure returns (int32 downcasted) { downcasted = int32(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(32, value); } } /** * @dev Returns the downcasted int24 from int256, reverting on * overflow (when the input is less than smallest int24 or * greater than largest int24). * * Counterpart to Solidity's `int24` operator. * * Requirements: * * - input must fit into 24 bits */ function toInt24(int256 value) internal pure returns (int24 downcasted) { downcasted = int24(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(24, value); } } /** * @dev Returns the downcasted int16 from int256, reverting on * overflow (when the input is less than smallest int16 or * greater than largest int16). * * Counterpart to Solidity's `int16` operator. * * Requirements: * * - input must fit into 16 bits */ function toInt16(int256 value) internal pure returns (int16 downcasted) { downcasted = int16(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(16, value); } } /** * @dev Returns the downcasted int8 from int256, reverting on * overflow (when the input is less than smallest int8 or * greater than largest int8). * * Counterpart to Solidity's `int8` operator. * * Requirements: * * - input must fit into 8 bits */ function toInt8(int256 value) internal pure returns (int8 downcasted) { downcasted = int8(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(8, value); } } /** * @dev Converts an unsigned uint256 into a signed int256. * * Requirements: * * - input must be less than or equal to maxInt256. */ function toInt256(uint256 value) internal pure returns (int256) { // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive if (value > uint256(type(int256).max)) { revert SafeCastOverflowedUintToInt(value); } return int256(value); } /** * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump. */ function toUint(bool b) internal pure returns (uint256 u) { assembly ("memory-safe") { u := iszero(iszero(b)) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.20; import {SafeCast} from "./SafeCast.sol"; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant. * * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone. * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute * one branch when needed, making this function more expensive. */ function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) { unchecked { // branchless ternary works because: // b ^ (a ^ b) == a // b ^ 0 == b return b ^ ((a ^ b) * int256(SafeCast.toUint(condition))); } } /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return ternary(a > b, a, b); } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return ternary(a < b, a, b); } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson. // Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift, // taking advantage of the most significant (or "sign" bit) in two's complement representation. // This opcode adds new most significant bits set to the value of the previous most significant bit. As a result, // the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative). int256 mask = n >> 255; // A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it. return uint256((n + mask) ^ mask); } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.28; /* solhint-disable no-empty-blocks */ import "@openzeppelin/contracts/utils/introspection/IERC165.sol"; import "@openzeppelin/contracts/token/ERC721/IERC721Receiver.sol"; import "@openzeppelin/contracts/token/ERC1155/IERC1155Receiver.sol"; /** * Token callback handler. * Handles supported tokens' callbacks, allowing account receiving these tokens. */ abstract contract TokenCallbackHandler is IERC721Receiver, IERC1155Receiver { function onERC721Received( address, address, uint256, bytes calldata ) external pure override returns (bytes4) { return IERC721Receiver.onERC721Received.selector; } function onERC1155Received( address, address, uint256, uint256, bytes calldata ) external pure override returns (bytes4) { return IERC1155Receiver.onERC1155Received.selector; } function onERC1155BatchReceived( address, address, uint256[] calldata, uint256[] calldata, bytes calldata ) external pure override returns (bytes4) { return IERC1155Receiver.onERC1155BatchReceived.selector; } function supportsInterface(bytes4 interfaceId) external view virtual override returns (bool) { return interfaceId == type(IERC721Receiver).interfaceId || interfaceId == type(IERC1155Receiver).interfaceId || interfaceId == type(IERC165).interfaceId; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.28; /* solhint-disable avoid-low-level-calls */ /* solhint-disable no-empty-blocks */ /* solhint-disable no-inline-assembly */ import "../interfaces/IAccount.sol"; import "../interfaces/IEntryPoint.sol"; import "../utils/Exec.sol"; import "./UserOperationLib.sol"; /** * Basic account implementation. * This contract provides the basic logic for implementing the IAccount interface - validateUserOp * Specific account implementation should inherit it and provide the account-specific logic. */ abstract contract BaseAccount is IAccount { using UserOperationLib for PackedUserOperation; struct Call { address target; uint256 value; bytes data; } error ExecuteError(uint256 index, bytes error); /** * Return the account nonce. * This method returns the next sequential nonce. * For a nonce of a specific key, use `entrypoint.getNonce(account, key)` */ function getNonce() public view virtual returns (uint256) { return entryPoint().getNonce(address(this), 0); } /** * Return the entryPoint used by this account. * Subclass should return the current entryPoint used by this account. */ function entryPoint() public view virtual returns (IEntryPoint); /** * execute a single call from the account. */ function execute(address target, uint256 value, bytes calldata data,uint256 deadline) virtual external { _requireDeadline(deadline); _requireForExecute(); bool ok = Exec.call(target, value, data, gasleft()); if (!ok) { Exec.revertWithReturnData(); } } /** * execute a batch of calls. * revert on the first call that fails. * If the batch reverts, and it contains more than a single call, then wrap the revert with ExecuteError, * to mark the failing call index. */ function executeBatch(Call[] calldata calls,uint256 deadline) virtual external { _requireDeadline(deadline); _requireForExecute(); uint256 callsLength = calls.length; for (uint256 i = 0; i < callsLength; i++) { Call calldata call = calls[i]; bool ok = Exec.call(call.target, call.value, call.data, gasleft()); if (!ok) { if (callsLength == 1) { Exec.revertWithReturnData(); } else { revert ExecuteError(i, Exec.getReturnData(0)); } } } } /// @inheritdoc IAccount function validateUserOp( PackedUserOperation calldata userOp, bytes32 userOpHash, uint256 missingAccountFunds ) external virtual override returns (uint256 validationData) { _requireFromEntryPoint(); validationData = _validateSignature(userOp, userOpHash); _validateNonce(userOp.nonce); _payPrefund(missingAccountFunds); } function _requireDeadline(uint256 deadline) internal view virtual { require(deadline >= block.timestamp,"account: Expired"); } /** * Ensure the request comes from the known entrypoint. */ function _requireFromEntryPoint() internal view virtual { require( msg.sender == address(entryPoint()), "account: not from EntryPoint" ); } function _requireForExecute() internal view virtual { _requireFromEntryPoint(); } /** * Validate the signature is valid for this message. * @param userOp - Validate the userOp.signature field. * @param userOpHash - Convenient field: the hash of the request, to check the signature against. * (also hashes the entrypoint and chain id) * @return validationData - Signature and time-range of this operation. * <20-byte> aggregatorOrSigFail - 0 for valid signature, 1 to mark signature failure, * otherwise, an address of an aggregator contract. * <6-byte> validUntil - Last timestamp this operation is valid at, or 0 for "indefinitely" * <6-byte> validAfter - first timestamp this operation is valid * If the account doesn't use time-range, it is enough to return * SIG_VALIDATION_FAILED value (1) for signature failure. * Note that the validation code cannot use block.timestamp (or block.number) directly. */ function _validateSignature( PackedUserOperation calldata userOp, bytes32 userOpHash ) internal virtual returns (uint256 validationData); /** * Validate the nonce of the UserOperation. * This method may validate the nonce requirement of this account. * e.g. * To limit the nonce to use sequenced UserOps only (no "out of order" UserOps): * `require(nonce < type(uint64).max)` * For a hypothetical account that *requires* the nonce to be out-of-order: * `require(nonce & type(uint64).max == 0)` * * The actual nonce uniqueness is managed by the EntryPoint, and thus no other * action is needed by the account itself. * * @param nonce to validate * * solhint-disable-next-line no-empty-blocks */ function _validateNonce(uint256 nonce) internal view virtual { } /** * Sends to the entrypoint (msg.sender) the missing funds for this transaction. * SubClass MAY override this method for better funds management * (e.g. send to the entryPoint more than the minimum required, so that in future transactions * it will not be required to send again). * @param missingAccountFunds - The minimum value this method should send the entrypoint. * This value MAY be zero, in case there is enough deposit, * or the userOp has a paymaster. */ function _payPrefund(uint256 missingAccountFunds) internal virtual { if (missingAccountFunds != 0) { (bool success,) = payable(msg.sender).call{ value: missingAccountFunds }(""); (success); // Ignore failure (its EntryPoint's job to verify, not account.) } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.28; /* solhint-disable no-inline-assembly */ /* * For simulation purposes, validateUserOp (and validatePaymasterUserOp) * must return this value in case of signature failure, instead of revert. */ uint256 constant SIG_VALIDATION_FAILED = 1; /* * For simulation purposes, validateUserOp (and validatePaymasterUserOp) * return this value on success. */ uint256 constant SIG_VALIDATION_SUCCESS = 0; /** * Returned data from validateUserOp. * validateUserOp returns a uint256, which is created by `_packedValidationData` and * parsed by `_parseValidationData`. * @param aggregator - address(0) - The account validated the signature by itself. * address(1) - The account failed to validate the signature. * otherwise - This is an address of a signature aggregator that must * be used to validate the signature. * @param validAfter - This UserOp is valid only after this timestamp. * @param validUntil - Last timestamp this operation is valid at, or 0 for "indefinitely". */ struct ValidationData { address aggregator; uint48 validAfter; uint48 validUntil; } /** * Extract aggregator/sigFailed, validAfter, validUntil. * Also convert zero validUntil to type(uint48).max. * @param validationData - The packed validation data. * @return data - The unpacked in-memory validation data. */ function _parseValidationData( uint256 validationData ) pure returns (ValidationData memory data) { address aggregator = address(uint160(validationData)); uint48 validUntil = uint48(validationData >> 160); if (validUntil == 0) { validUntil = type(uint48).max; } uint48 validAfter = uint48(validationData >> (48 + 160)); return ValidationData(aggregator, validAfter, validUntil); } /** * Helper to pack the return value for validateUserOp. * @param data - The ValidationData to pack. * @return the packed validation data. */ function _packValidationData( ValidationData memory data ) pure returns (uint256) { return uint160(data.aggregator) | (uint256(data.validUntil) << 160) | (uint256(data.validAfter) << (160 + 48)); } /** * Helper to pack the return value for validateUserOp, when not using an aggregator. * @param sigFailed - True for signature failure, false for success. * @param validUntil - Last timestamp this operation is valid at, or 0 for "indefinitely". * @param validAfter - First timestamp this UserOperation is valid. * @return the packed validation data. */ function _packValidationData( bool sigFailed, uint48 validUntil, uint48 validAfter ) pure returns (uint256) { return (sigFailed ? SIG_VALIDATION_FAILED : SIG_VALIDATION_SUCCESS) | (uint256(validUntil) << 160) | (uint256(validAfter) << (160 + 48)); } /** * keccak function over calldata. * @dev copy calldata into memory, do keccak and drop allocated memory. Strangely, this is more efficient than letting solidity do it. * * @param data - the calldata bytes array to perform keccak on. * @return ret - the keccak hash of the 'data' array. */ function calldataKeccak(bytes calldata data) pure returns (bytes32 ret) { assembly ("memory-safe") { let mem := mload(0x40) let len := data.length calldatacopy(mem, data.offset, len) ret := keccak256(mem, len) } } /** * The minimum of two numbers. * @param a - First number. * @param b - Second number. * @return - the minimum value. */ function min(uint256 a, uint256 b) pure returns (uint256) { return a < b ? a : b; } /** * standard solidity memory allocation finalization. * copied from solidity generated code * @param memPointer - The current memory pointer * @param allocationSize - Bytes allocated from memPointer. */ function finalizeAllocation(uint256 memPointer, uint256 allocationSize) pure { assembly ("memory-safe"){ finalize_allocation(memPointer, allocationSize) function finalize_allocation(memPtr, size) { let newFreePtr := add(memPtr, round_up_to_mul_of_32(size)) mstore(64, newFreePtr) } function round_up_to_mul_of_32(value) -> result { result := and(add(value, 31), not(31)) } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.28; /* solhint-disable no-inline-assembly */ import "../interfaces/PackedUserOperation.sol"; import {calldataKeccak, min} from "./Helpers.sol"; /** * Utility functions helpful when working with UserOperation structs. */ library UserOperationLib { uint256 public constant PAYMASTER_VALIDATION_GAS_OFFSET = 20; uint256 public constant PAYMASTER_POSTOP_GAS_OFFSET = 36; uint256 public constant PAYMASTER_DATA_OFFSET = 52; /** * Relayer/block builder might submit the TX with higher priorityFee, * but the user should not pay above what he signed for. * @param userOp - The user operation data. */ function gasPrice( PackedUserOperation calldata userOp ) internal view returns (uint256) { unchecked { (uint256 maxPriorityFeePerGas, uint256 maxFeePerGas) = unpackUints(userOp.gasFees); return min(maxFeePerGas, maxPriorityFeePerGas + block.basefee); } } bytes32 internal constant PACKED_USEROP_TYPEHASH = keccak256( "PackedUserOperation(address sender,uint256 nonce,bytes initCode,bytes callData,bytes32 accountGasLimits,uint256 preVerificationGas,bytes32 gasFees,bytes paymasterAndData)" ); /** * Pack the user operation data into bytes for hashing. * @param userOp - The user operation data. * @param overrideInitCodeHash - If set, encode this instead of the initCode field in the userOp. */ function encode( PackedUserOperation calldata userOp, bytes32 overrideInitCodeHash ) internal pure returns (bytes memory ret) { address sender = userOp.sender; uint256 nonce = userOp.nonce; bytes32 hashInitCode = overrideInitCodeHash != 0 ? overrideInitCodeHash : calldataKeccak(userOp.initCode); bytes32 hashCallData = calldataKeccak(userOp.callData); bytes32 accountGasLimits = userOp.accountGasLimits; uint256 preVerificationGas = userOp.preVerificationGas; bytes32 gasFees = userOp.gasFees; bytes32 hashPaymasterAndData = calldataKeccak(userOp.paymasterAndData); return abi.encode( UserOperationLib.PACKED_USEROP_TYPEHASH, sender, nonce, hashInitCode, hashCallData, accountGasLimits, preVerificationGas, gasFees, hashPaymasterAndData ); } function unpackUints( bytes32 packed ) internal pure returns (uint256 high128, uint256 low128) { return (unpackHigh128(packed), unpackLow128(packed)); } // Unpack just the high 128-bits from a packed value function unpackHigh128(bytes32 packed) internal pure returns (uint256) { return uint256(packed) >> 128; } // Unpack just the low 128-bits from a packed value function unpackLow128(bytes32 packed) internal pure returns (uint256) { return uint128(uint256(packed)); } function unpackMaxPriorityFeePerGas(PackedUserOperation calldata userOp) internal pure returns (uint256) { return unpackHigh128(userOp.gasFees); } function unpackMaxFeePerGas(PackedUserOperation calldata userOp) internal pure returns (uint256) { return unpackLow128(userOp.gasFees); } function unpackVerificationGasLimit(PackedUserOperation calldata userOp) internal pure returns (uint256) { return unpackHigh128(userOp.accountGasLimits); } function unpackCallGasLimit(PackedUserOperation calldata userOp) internal pure returns (uint256) { return unpackLow128(userOp.accountGasLimits); } function unpackPaymasterVerificationGasLimit(PackedUserOperation calldata userOp) internal pure returns (uint256) { return uint128(bytes16(userOp.paymasterAndData[PAYMASTER_VALIDATION_GAS_OFFSET : PAYMASTER_POSTOP_GAS_OFFSET])); } function unpackPostOpGasLimit(PackedUserOperation calldata userOp) internal pure returns (uint256) { return uint128(bytes16(userOp.paymasterAndData[PAYMASTER_POSTOP_GAS_OFFSET : PAYMASTER_DATA_OFFSET])); } function unpackPaymasterStaticFields( bytes calldata paymasterAndData ) internal pure returns (address paymaster, uint256 validationGasLimit, uint256 postOpGasLimit) { return ( address(bytes20(paymasterAndData[: PAYMASTER_VALIDATION_GAS_OFFSET])), uint128(bytes16(paymasterAndData[PAYMASTER_VALIDATION_GAS_OFFSET : PAYMASTER_POSTOP_GAS_OFFSET])), uint128(bytes16(paymasterAndData[PAYMASTER_POSTOP_GAS_OFFSET : PAYMASTER_DATA_OFFSET])) ); } /** * Hash the user operation data. * @param userOp - The user operation data. * @param overrideInitCodeHash - If set, the initCode hash will be replaced with this value just for UserOp hashing. */ function hash( PackedUserOperation calldata userOp, bytes32 overrideInitCodeHash ) internal pure returns (bytes32) { return keccak256(encode(userOp, overrideInitCodeHash)); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.28; import "./PackedUserOperation.sol"; interface IAccount { /** * Validate user's signature and nonce * the entryPoint will make the call to the recipient only if this validation call returns successfully. * signature failure should be reported by returning SIG_VALIDATION_FAILED (1). * This allows making a "simulation call" without a valid signature * Other failures (e.g. nonce mismatch, or invalid signature format) should still revert to signal failure. * * @dev Must validate caller is the entryPoint. * Must validate the signature and nonce * @param userOp - The operation that is about to be executed. * @param userOpHash - Hash of the user's request data. can be used as the basis for signature. * @param missingAccountFunds - Missing funds on the account's deposit in the entrypoint. * This is the minimum amount to transfer to the sender(entryPoint) to be * able to make the call. The excess is left as a deposit in the entrypoint * for future calls. Can be withdrawn anytime using "entryPoint.withdrawTo()". * In case there is a paymaster in the request (or the current deposit is high * enough), this value will be zero. * @return validationData - Packaged ValidationData structure. use `_packValidationData` and * `_unpackValidationData` to encode and decode. * <20-byte> aggregatorOrSigFail - 0 for valid signature, 1 to mark signature failure, * otherwise, an address of an "aggregator" contract. * <6-byte> validUntil - Last timestamp this operation is valid at, or 0 for "indefinitely" * <6-byte> validAfter - First timestamp this operation is valid * If an account doesn't use time-range, it is enough to * return SIG_VALIDATION_FAILED value (1) for signature failure. * Note that the validation code cannot use block.timestamp (or block.number) directly. */ function validateUserOp( PackedUserOperation calldata userOp, bytes32 userOpHash, uint256 missingAccountFunds ) external returns (uint256 validationData); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.28; import "./PackedUserOperation.sol"; /** * Aggregated Signatures validator. */ interface IAggregator { /** * Validate an aggregated signature. * Reverts if the aggregated signature does not match the given list of operations. * @param userOps - An array of UserOperations to validate the signature for. * @param signature - The aggregated signature. */ function validateSignatures( PackedUserOperation[] calldata userOps, bytes calldata signature ) external; /** * Validate the signature of a single userOp. * This method should be called by bundler after EntryPointSimulation.simulateValidation() returns * the aggregator this account uses. * First it validates the signature over the userOp. Then it returns data to be used when creating the handleOps. * @param userOp - The userOperation received from the user. * @return sigForUserOp - The value to put into the signature field of the userOp when calling handleOps. * (usually empty, unless account and aggregator support some kind of "multisig". */ function validateUserOpSignature( PackedUserOperation calldata userOp ) external view returns (bytes memory sigForUserOp); /** * Aggregate multiple signatures into a single value. * This method is called off-chain to calculate the signature to pass with handleOps() * bundler MAY use optimized custom code to perform this aggregation. * @param userOps - An array of UserOperations to collect the signatures from. * @return aggregatedSignature - The aggregated signature. */ function aggregateSignatures( PackedUserOperation[] calldata userOps ) external view returns (bytes memory aggregatedSignature); }
/** ** Account-Abstraction (EIP-4337) singleton EntryPoint implementation. ** Only one instance required on each chain. **/ // SPDX-License-Identifier: MIT pragma solidity ^0.8.28; /* solhint-disable avoid-low-level-calls */ /* solhint-disable no-inline-assembly */ /* solhint-disable reason-string */ import "./PackedUserOperation.sol"; import "./IStakeManager.sol"; import "./IAggregator.sol"; import "./INonceManager.sol"; import "./ISenderCreator.sol"; interface IEntryPoint is IStakeManager, INonceManager { /*** * An event emitted after each successful request. * @param userOpHash - Unique identifier for the request (hash its entire content, except signature). * @param sender - The account that generates this request. * @param paymaster - If non-null, the paymaster that pays for this request. * @param nonce - The nonce value from the request. * @param success - True if the sender transaction succeeded, false if reverted. * @param actualGasCost - Actual amount paid (by account or paymaster) for this UserOperation. * @param actualGasUsed - Total gas used by this UserOperation (including preVerification, creation, * validation and execution). */ event UserOperationEvent( bytes32 indexed userOpHash, address indexed sender, address indexed paymaster, uint256 nonce, bool success, uint256 actualGasCost, uint256 actualGasUsed ); /** * Account "sender" was deployed. * @param userOpHash - The userOp that deployed this account. UserOperationEvent will follow. * @param sender - The account that is deployed * @param factory - The factory used to deploy this account (in the initCode) * @param paymaster - The paymaster used by this UserOp */ event AccountDeployed( bytes32 indexed userOpHash, address indexed sender, address factory, address paymaster ); /** * An event emitted if the UserOperation "callData" reverted with non-zero length. * @param userOpHash - The request unique identifier. * @param sender - The sender of this request. * @param nonce - The nonce used in the request. * @param revertReason - The return bytes from the reverted "callData" call. */ event UserOperationRevertReason( bytes32 indexed userOpHash, address indexed sender, uint256 nonce, bytes revertReason ); /** * An event emitted if the UserOperation Paymaster's "postOp" call reverted with non-zero length. * @param userOpHash - The request unique identifier. * @param sender - The sender of this request. * @param nonce - The nonce used in the request. * @param revertReason - The return bytes from the reverted call to "postOp". */ event PostOpRevertReason( bytes32 indexed userOpHash, address indexed sender, uint256 nonce, bytes revertReason ); /** * UserOp consumed more than prefund. The UserOperation is reverted, and no refund is made. * @param userOpHash - The request unique identifier. * @param sender - The sender of this request. * @param nonce - The nonce used in the request. */ event UserOperationPrefundTooLow( bytes32 indexed userOpHash, address indexed sender, uint256 nonce ); /** * An event emitted by handleOps() and handleAggregatedOps(), before starting the execution loop. * Any event emitted before this event, is part of the validation. */ event BeforeExecution(); /** * Signature aggregator used by the following UserOperationEvents within this bundle. * @param aggregator - The aggregator used for the following UserOperationEvents. */ event SignatureAggregatorChanged(address indexed aggregator); /** * A custom revert error of handleOps andhandleAggregatedOps, to identify the offending op. * Should be caught in off-chain handleOps/handleAggregatedOps simulation and not happen on-chain. * Useful for mitigating DoS attempts against batchers or for troubleshooting of factory/account/paymaster reverts. * NOTE: If simulateValidation passes successfully, there should be no reason for handleOps to fail on it. * @param opIndex - Index into the array of ops to the failed one (in simulateValidation, this is always zero). * @param reason - Revert reason. The string starts with a unique code "AAmn", * where "m" is "1" for factory, "2" for account and "3" for paymaster issues, * so a failure can be attributed to the correct entity. */ error FailedOp(uint256 opIndex, string reason); /** * A custom revert error of handleOps and handleAggregatedOps, to report a revert by account or paymaster. * @param opIndex - Index into the array of ops to the failed one (in simulateValidation, this is always zero). * @param reason - Revert reason. see FailedOp(uint256,string), above * @param inner - data from inner cought revert reason * @dev note that inner is truncated to 2048 bytes */ error FailedOpWithRevert(uint256 opIndex, string reason, bytes inner); error PostOpReverted(bytes returnData); /** * Error case when a signature aggregator fails to verify the aggregated signature it had created. * @param aggregator The aggregator that failed to verify the signature */ error SignatureValidationFailed(address aggregator); // Return value of getSenderAddress. error SenderAddressResult(address sender); // UserOps handled, per aggregator. struct UserOpsPerAggregator { PackedUserOperation[] userOps; // Aggregator address IAggregator aggregator; // Aggregated signature bytes signature; } /** * Execute a batch of UserOperations. * No signature aggregator is used. * If any account requires an aggregator (that is, it returned an aggregator when * performing simulateValidation), then handleAggregatedOps() must be used instead. * @param ops - The operations to execute. * @param beneficiary - The address to receive the fees. */ function handleOps( PackedUserOperation[] calldata ops, address payable beneficiary ) external; /** * Execute a batch of UserOperation with Aggregators * @param opsPerAggregator - The operations to execute, grouped by aggregator (or address(0) for no-aggregator accounts). * @param beneficiary - The address to receive the fees. */ function handleAggregatedOps( UserOpsPerAggregator[] calldata opsPerAggregator, address payable beneficiary ) external; /** * Generate a request Id - unique identifier for this request. * The request ID is a hash over the content of the userOp (except the signature), entrypoint address, chainId and (optionally) 7702 delegate address * @param userOp - The user operation to generate the request ID for. * @return hash the hash of this UserOperation */ function getUserOpHash( PackedUserOperation calldata userOp ) external view returns (bytes32); /** * Gas and return values during simulation. * @param preOpGas - The gas used for validation (including preValidationGas) * @param prefund - The required prefund for this operation * @param accountValidationData - returned validationData from account. * @param paymasterValidationData - return validationData from paymaster. * @param paymasterContext - Returned by validatePaymasterUserOp (to be passed into postOp) */ struct ReturnInfo { uint256 preOpGas; uint256 prefund; uint256 accountValidationData; uint256 paymasterValidationData; bytes paymasterContext; } /** * Get counterfactual sender address. * Calculate the sender contract address that will be generated by the initCode and salt in the UserOperation. * This method always revert, and returns the address in SenderAddressResult error. * @notice this method cannot be used for EIP-7702 derived contracts. * * @param initCode - The constructor code to be passed into the UserOperation. */ function getSenderAddress(bytes memory initCode) external; error DelegateAndRevert(bool success, bytes ret); /** * Helper method for dry-run testing. * @dev calling this method, the EntryPoint will make a delegatecall to the given data, and report (via revert) the result. * The method always revert, so is only useful off-chain for dry run calls, in cases where state-override to replace * actual EntryPoint code is less convenient. * @param target a target contract to make a delegatecall from entrypoint * @param data data to pass to target in a delegatecall */ function delegateAndRevert(address target, bytes calldata data) external; /** * @notice Retrieves the immutable SenderCreator contract which is responsible for deployment of sender contracts. */ function senderCreator() external view returns (ISenderCreator); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.28; interface INonceManager { /** * Return the next nonce for this sender. * Within a given key, the nonce values are sequenced (starting with zero, and incremented by one on each userop) * But UserOp with different keys can come with arbitrary order. * * @param sender the account address * @param key the high 192 bit of the nonce * @return nonce a full nonce to pass for next UserOp with this sender. */ function getNonce(address sender, uint192 key) external view returns (uint256 nonce); /** * Manually increment the nonce of the sender. * This method is exposed just for completeness.. * Account does NOT need to call it, neither during validation, nor elsewhere, * as the EntryPoint will update the nonce regardless. * Possible use-case is call it with various keys to "initialize" their nonces to one, so that future * UserOperations will not pay extra for the first transaction with a given key. * * @param key - the "nonce key" to increment the "nonce sequence" for. */ function incrementNonce(uint192 key) external; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.28; interface ISenderCreator { /** * @dev Creates a new sender contract. * @return sender Address of the newly created sender contract. */ function createSender(bytes calldata initCode) external returns (address sender); /** * Use initCallData to initialize an EIP-7702 account. * The caller is the EntryPoint contract and it is already verified to be an EIP-7702 account. * Note: Can be called multiple times as long as an appropriate initCode is supplied * * @param sender - the 'sender' EIP-7702 account to be initialized. * @param initCallData - the call data to be passed to the sender account call. */ function initEip7702Sender(address sender, bytes calldata initCallData) external; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.28; /** * Manage deposits and stakes. * Deposit is just a balance used to pay for UserOperations (either by a paymaster or an account). * Stake is value locked for at least "unstakeDelay" by the staked entity. */ interface IStakeManager { event Deposited(address indexed account, uint256 totalDeposit); event Withdrawn( address indexed account, address withdrawAddress, uint256 amount ); // Emitted when stake or unstake delay are modified. event StakeLocked( address indexed account, uint256 totalStaked, uint256 unstakeDelaySec ); // Emitted once a stake is scheduled for withdrawal. event StakeUnlocked(address indexed account, uint256 withdrawTime); event StakeWithdrawn( address indexed account, address withdrawAddress, uint256 amount ); /** * @param deposit - The entity's deposit. * @param staked - True if this entity is staked. * @param stake - Actual amount of ether staked for this entity. * @param unstakeDelaySec - Minimum delay to withdraw the stake. * @param withdrawTime - First block timestamp where 'withdrawStake' will be callable, or zero if already locked. * @dev Sizes were chosen so that deposit fits into one cell (used during handleOp) * and the rest fit into a 2nd cell (used during stake/unstake) * - 112 bit allows for 10^15 eth * - 48 bit for full timestamp * - 32 bit allows 150 years for unstake delay */ struct DepositInfo { uint256 deposit; bool staked; uint112 stake; uint32 unstakeDelaySec; uint48 withdrawTime; } // API struct used by getStakeInfo and simulateValidation. struct StakeInfo { uint256 stake; uint256 unstakeDelaySec; } /** * Get deposit info. * @param account - The account to query. * @return info - Full deposit information of given account. */ function getDepositInfo( address account ) external view returns (DepositInfo memory info); /** * Get account balance. * @param account - The account to query. * @return - The deposit (for gas payment) of the account. */ function balanceOf(address account) external view returns (uint256); /** * Add to the deposit of the given account. * @param account - The account to add to. */ function depositTo(address account) external payable; /** * Add to the account's stake - amount and delay * any pending unstake is first cancelled. * @param unstakeDelaySec - The new lock duration before the deposit can be withdrawn. */ function addStake(uint32 unstakeDelaySec) external payable; /** * Attempt to unlock the stake. * The value can be withdrawn (using withdrawStake) after the unstake delay. */ function unlockStake() external; /** * Withdraw from the (unlocked) stake. * Must first call unlockStake and wait for the unstakeDelay to pass. * @param withdrawAddress - The address to send withdrawn value. */ function withdrawStake(address payable withdrawAddress) external; /** * Withdraw from the deposit. * @param withdrawAddress - The address to send withdrawn value. * @param withdrawAmount - The amount to withdraw. */ function withdrawTo( address payable withdrawAddress, uint256 withdrawAmount ) external; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.28; /** * User Operation struct * @param sender - The sender account of this request. * @param nonce - Unique value the sender uses to verify it is not a replay. * @param initCode - If set, the account contract will be created by this constructor * @param callData - The method call to execute on this account. * @param accountGasLimits - Packed gas limits for validateUserOp and gas limit passed to the callData method call. * @param preVerificationGas - Gas not calculated by the handleOps method, but added to the gas paid. * Covers batch overhead. * @param gasFees - packed gas fields maxPriorityFeePerGas and maxFeePerGas - Same as EIP-1559 gas parameters. * @param paymasterAndData - If set, this field holds the paymaster address, verification gas limit, postOp gas limit and paymaster-specific extra data * The paymaster will pay for the transaction instead of the sender. * @param signature - Sender-verified signature over the entire request, the EntryPoint address and the chain ID. */ struct PackedUserOperation { address sender; uint256 nonce; bytes initCode; bytes callData; bytes32 accountGasLimits; uint256 preVerificationGas; bytes32 gasFees; bytes paymasterAndData; bytes signature; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.28; // solhint-disable no-inline-assembly /** * Utility functions helpful when making different kinds of contract calls in Solidity. */ library Exec { function call( address to, uint256 value, bytes memory data, uint256 txGas ) internal returns (bool success) { assembly ("memory-safe") { success := call(txGas, to, value, add(data, 0x20), mload(data), 0, 0) } } function staticcall( address to, bytes memory data, uint256 txGas ) internal view returns (bool success) { assembly ("memory-safe") { success := staticcall(txGas, to, add(data, 0x20), mload(data), 0, 0) } } function delegateCall( address to, bytes memory data, uint256 txGas ) internal returns (bool success) { assembly ("memory-safe") { success := delegatecall(txGas, to, add(data, 0x20), mload(data), 0, 0) } } // get returned data from last call or delegateCall // maxLen - maximum length of data to return, or zero, for the full length function getReturnData(uint256 maxLen) internal pure returns (bytes memory returnData) { assembly ("memory-safe") { let len := returndatasize() if gt(maxLen,0) { if gt(len, maxLen) { len := maxLen } } let ptr := mload(0x40) mstore(0x40, add(ptr, add(len, 0x20))) mstore(ptr, len) returndatacopy(add(ptr, 0x20), 0, len) returnData := ptr } } // revert with explicit byte array (probably reverted info from call) function revertWithData(bytes memory returnData) internal pure { assembly ("memory-safe") { revert(add(returnData, 32), mload(returnData)) } } // Propagate revert data from last call function revertWithReturnData() internal pure { revertWithData(getReturnData(0)); } }
{ "viaIR": true, "metadata": { "bytecodeHash": "ipfs", "useLiteralContent": true }, "libraries": {}, "optimizer": { "runs": 1000000, "enabled": true }, "evmVersion": "cancun", "remappings": [], "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "abi" ] } } }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[{"internalType":"contract IEntryPoint","name":"anEntryPoint","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"target","type":"address"}],"name":"AddressEmptyCode","type":"error"},{"inputs":[],"name":"ECDSAInvalidSignature","type":"error"},{"inputs":[{"internalType":"uint256","name":"length","type":"uint256"}],"name":"ECDSAInvalidSignatureLength","type":"error"},{"inputs":[{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"ECDSAInvalidSignatureS","type":"error"},{"inputs":[{"internalType":"address","name":"implementation","type":"address"}],"name":"ERC1967InvalidImplementation","type":"error"},{"inputs":[],"name":"ERC1967NonPayable","type":"error"},{"inputs":[{"internalType":"uint256","name":"index","type":"uint256"},{"internalType":"bytes","name":"error","type":"bytes"}],"name":"ExecuteError","type":"error"},{"inputs":[],"name":"FailedCall","type":"error"},{"inputs":[],"name":"InvalidInitialization","type":"error"},{"inputs":[],"name":"NotInitializing","type":"error"},{"inputs":[],"name":"UUPSUnauthorizedCallContext","type":"error"},{"inputs":[{"internalType":"bytes32","name":"slot","type":"bytes32"}],"name":"UUPSUnsupportedProxiableUUID","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint64","name":"version","type":"uint64"}],"name":"Initialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"contract IEntryPoint","name":"entryPoint","type":"address"},{"indexed":true,"internalType":"address","name":"owner","type":"address"}],"name":"SimpleAccountInitialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"implementation","type":"address"}],"name":"Upgraded","type":"event"},{"inputs":[],"name":"UPGRADE_INTERFACE_VERSION","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"addDeposit","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"entryPoint","outputs":[{"internalType":"contract IEntryPoint","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"target","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"},{"internalType":"uint256","name":"deadline","type":"uint256"}],"name":"execute","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"target","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"internalType":"struct BaseAccount.Call[]","name":"calls","type":"tuple[]"},{"internalType":"uint256","name":"deadline","type":"uint256"}],"name":"executeBatch","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"getDeposit","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getNonce","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"anOwner","type":"address"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"address","name":"","type":"address"},{"internalType":"uint256[]","name":"","type":"uint256[]"},{"internalType":"uint256[]","name":"","type":"uint256[]"},{"internalType":"bytes","name":"","type":"bytes"}],"name":"onERC1155BatchReceived","outputs":[{"internalType":"bytes4","name":"","type":"bytes4"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"address","name":"","type":"address"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"bytes","name":"","type":"bytes"}],"name":"onERC1155Received","outputs":[{"internalType":"bytes4","name":"","type":"bytes4"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"address","name":"","type":"address"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"bytes","name":"","type":"bytes"}],"name":"onERC721Received","outputs":[{"internalType":"bytes4","name":"","type":"bytes4"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"proxiableUUID","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newImplementation","type":"address"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"upgradeToAndCall","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"nonce","type":"uint256"},{"internalType":"bytes","name":"initCode","type":"bytes"},{"internalType":"bytes","name":"callData","type":"bytes"},{"internalType":"bytes32","name":"accountGasLimits","type":"bytes32"},{"internalType":"uint256","name":"preVerificationGas","type":"uint256"},{"internalType":"bytes32","name":"gasFees","type":"bytes32"},{"internalType":"bytes","name":"paymasterAndData","type":"bytes"},{"internalType":"bytes","name":"signature","type":"bytes"}],"internalType":"struct PackedUserOperation","name":"userOp","type":"tuple"},{"internalType":"bytes32","name":"userOpHash","type":"bytes32"},{"internalType":"uint256","name":"missingAccountFunds","type":"uint256"}],"name":"validateUserOp","outputs":[{"internalType":"uint256","name":"validationData","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address payable","name":"withdrawAddress","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"withdrawDepositTo","outputs":[],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]
Contract Creation Code
60c03461014757601f611ad638819003918201601f19168301916001600160401b0383118484101761014b5780849260209460405283398101031261014757516001600160a01b0381168103610147573060805260a0525f516020611ab65f395f51905f525460ff8160401c16610138576002600160401b03196001600160401b038216016100e2575b604051611956908161016082396080518181816108cf01526109c3015260a0518181816101f0015281816103a701528181610596015281816106ec01528181610d0001528181610dd501528181610ee101526115080152f35b6001600160401b0319166001600160401b039081175f516020611ab65f395f51905f52556040519081527fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d290602090a15f610089565b63f92ee8a960e01b5f5260045ffd5b5f80fd5b634e487b7160e01b5f52604160045260245ffdfe608080604052600436101561001c575b50361561001a575f80fd5b005b5f905f3560e01c90816301ffc9a71461118757508063150b7a02146110fa57806315f2611214610f9f57806319822f7c14610e595780634a58db1914610d945780634d44560d14610c8f5780634f1ef2861461094757806352d1902d1461088957806374420f4c146107e45780638da5cb5b14610793578063ad3cb1cc14610710578063b0d691fe146106a1578063bc197c81146105cf578063c399ec881461051d578063c4d66de81461026d578063d087d288146101715763f23a6e610361000f573461016e5760a07ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261016e57610116611274565b5061011f611297565b5060843567ffffffffffffffff811161016c576101409036906004016112ba565b505060206040517ff23a6e61000000000000000000000000000000000000000000000000000000008152f35b505b80fd5b503461016e57807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261016e57604051907f35567e1a00000000000000000000000000000000000000000000000000000000825230600483015280602483015260208260448173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000165afa908115610261579061022a575b602090604051908152f35b506020813d602011610259575b8161024460209383611319565b81010312610255576020905161021f565b5f80fd5b3d9150610237565b604051903d90823e3d90fd5b503461016e5760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261016e576102a5611274565b7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00549060ff8260401c16159167ffffffffffffffff811680159081610515575b600114908161050b575b159081610502575b506104da5790818360017fffffffffffffffffffffffffffffffffffffffffffffffff000000000000000073ffffffffffffffffffffffffffffffffffffffff9516177ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a0055610485575b501690817fffffffffffffffffffffffff00000000000000000000000000000000000000008454161783556040519173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000167f47e55c76e7a6f1fd8996a1da8008c1ea29699cca35e7bcd057f2dec313b6e5de8580a36103f3575080f35b60207fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d2917fffffffffffffffffffffffffffffffffffffffffffffff00ffffffffffffffff7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a0054167ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a005560018152a180f35b7fffffffffffffffffffffffffffffffffffffffffffffff0000000000000000001668010000000000000001177ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00555f610361565b6004847ff92ee8a9000000000000000000000000000000000000000000000000000000008152fd5b9050155f6102f7565b303b1591506102ef565b8491506102e5565b503461016e57807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261016e57604051907f70a0823100000000000000000000000000000000000000000000000000000000825230600483015260208260248173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000165afa908115610261579061022a57602090604051908152f35b503461016e5760a07ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261016e57610607611274565b50610610611297565b5060443567ffffffffffffffff811161016c576106319036906004016112e8565b505060643567ffffffffffffffff811161016c576106539036906004016112e8565b505060843567ffffffffffffffff811161016c576106759036906004016112ba565b505060206040517fbc197c81000000000000000000000000000000000000000000000000000000008152f35b503461016e57807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261016e57602060405173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000168152f35b503461016e57807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261016e575061078f604051610751604082611319565b600581527f352e302e3000000000000000000000000000000000000000000000000000000060208201526040519182916020835260208301906113f7565b0390f35b503461016e57807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261016e5773ffffffffffffffffffffffffffffffffffffffff6020915416604051908152f35b503461016e5760807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261016e578061081d611274565b60443567ffffffffffffffff81116108855782916108426108609236906004016112ba565b929061084f60643561148b565b6108576114f1565b5a9336916113c1565b916020835193019160243591f1156108755780f35b61087d6115b6565b602081519101fd5b5050fd5b503461016e57807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261016e5773ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000000000000000000000000000000000000000000016300361091f5760206040517f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc8152f35b807fe07c8dba0000000000000000000000000000000000000000000000000000000060049252fd5b5060407ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261016e5761097a611274565b9060243567ffffffffffffffff811161016c573660238201121561016c576109ac9036906024816004013591016113c1565b73ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000000000000000000000000000000000000000000016803014908115610c4d575b50610c25576109fb611657565b73ffffffffffffffffffffffffffffffffffffffff831690604051937f52d1902d000000000000000000000000000000000000000000000000000000008552602085600481865afa80958596610bed575b50610a7d57602484847f4c9c8ce3000000000000000000000000000000000000000000000000000000008252600452fd5b9091847f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc8103610bc25750813b15610b9757807fffffffffffffffffffffffff00000000000000000000000000000000000000007f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc5416177f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc557fbc7cd75a20ee27fd9adebab32041f755214dbc6bffa90cc0225b39da2e5c2d3b8480a28151839015610b645780836020610b6095519101845af4610b5a611628565b91611887565b5080f35b50505034610b6f5780f35b807fb398979f0000000000000000000000000000000000000000000000000000000060049252fd5b7f4c9c8ce3000000000000000000000000000000000000000000000000000000008452600452602483fd5b7faa1d49a4000000000000000000000000000000000000000000000000000000008552600452602484fd5b9095506020813d602011610c1d575b81610c0960209383611319565b81010312610c195751945f610a4c565b8480fd5b3d9150610bfc565b6004827fe07c8dba000000000000000000000000000000000000000000000000000000008152fd5b905073ffffffffffffffffffffffffffffffffffffffff7f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc541614155f6109ee565b503461016e5760407ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261016e578060043573ffffffffffffffffffffffffffffffffffffffff8116809103610d9157610ce9611657565b73ffffffffffffffffffffffffffffffffffffffff7f00000000000000000000000000000000000000000000000000000000000000001690813b156108855782916044839260405194859384927f205c2878000000000000000000000000000000000000000000000000000000008452600484015260243560248401525af18015610d8657610d755750f35b81610d7f91611319565b61016e5780f35b6040513d84823e3d90fd5b50fd5b505f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126102555773ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000000000000000000000000000000000000000000016803b15610255575f602491604051928380927fb760faf900000000000000000000000000000000000000000000000000000000825230600483015234905af18015610e4e57610e42575080f35b61001a91505f90611319565b6040513d5f823e3d90fd5b346102555760607ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126102555760043567ffffffffffffffff8111610255576101207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc82360301126102555760443573ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000163303610f4157610f19602092602435906004016115d0565b9080610f29575b50604051908152f35b5f80808093335af150610f3a611628565b5082610f20565b60646040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601c60248201527f6163636f756e743a206e6f742066726f6d20456e747279506f696e74000000006044820152fd5b346102555760407ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126102555760043567ffffffffffffffff811161025557610fee9036906004016112e8565b610ff960243561148b565b6110016114f1565b5f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffa183360301905b8281101561001a578060051b8401358281121561025557840180359073ffffffffffffffffffffffffffffffffffffffff82168203610255575f918161108161107660408695018361143a565b91905a9236916113c1565b926020808551950193013591f11561109b57600101611029565b600183036110ab5761087d6115b6565b6110b36115b6565b906110f66040519283927f5a15467500000000000000000000000000000000000000000000000000000000845260048401526040602484015260448301906113f7565b0390fd5b346102555760807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261025557611131611274565b5061113a611297565b5060643567ffffffffffffffff81116102555761115b9036906004016112ba565b505060206040517f150b7a02000000000000000000000000000000000000000000000000000000008152f35b346102555760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261025557600435907fffffffff00000000000000000000000000000000000000000000000000000000821680920361025557817f150b7a02000000000000000000000000000000000000000000000000000000006020931490811561124a575b8115611220575b5015158152f35b7f01ffc9a70000000000000000000000000000000000000000000000000000000091501483611219565b7f4e2312e00000000000000000000000000000000000000000000000000000000081149150611212565b6004359073ffffffffffffffffffffffffffffffffffffffff8216820361025557565b6024359073ffffffffffffffffffffffffffffffffffffffff8216820361025557565b9181601f840112156102555782359167ffffffffffffffff8311610255576020838186019501011161025557565b9181601f840112156102555782359167ffffffffffffffff8311610255576020808501948460051b01011161025557565b90601f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0910116810190811067ffffffffffffffff82111761135a57604052565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b67ffffffffffffffff811161135a57601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe01660200190565b9291926113cd82611387565b916113db6040519384611319565b829481845281830111610255578281602093845f960137010152565b907fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f602080948051918291828752018686015e5f8582860101520116010190565b9035907fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe181360301821215610255570180359067ffffffffffffffff82116102555760200191813603831361025557565b421161149357565b60646040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601060248201527f6163636f756e743a2045787069726564000000000000000000000000000000006044820152fd5b73ffffffffffffffffffffffffffffffffffffffff7f00000000000000000000000000000000000000000000000000000000000000001633148015611596575b1561153857565b60646040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602060248201527f6163636f756e743a206e6f74204f776e6572206f7220456e747279506f696e746044820152fd5b5073ffffffffffffffffffffffffffffffffffffffff5f54163314611531565b3d604051906020818301016040528082525f602083013e90565b9061161961161073ffffffffffffffffffffffffffffffffffffffff9261160a611603855f54169661010081019061143a565b36916113c1565b906116e6565b90929192611720565b1603611623575f90565b600190565b3d15611652573d9061163982611387565b916116476040519384611319565b82523d5f602084013e565b606090565b73ffffffffffffffffffffffffffffffffffffffff5f5416331480156116dd575b1561167f57565b60646040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600a60248201527f6f6e6c79206f776e6572000000000000000000000000000000000000000000006044820152fd5b50303314611678565b81519190604183036117165761170f9250602082015190606060408401519301515f1a906117f8565b9192909190565b50505f9160029190565b60048110156117cb5780611732575050565b60018103611762577ff645eedf000000000000000000000000000000000000000000000000000000005f5260045ffd5b6002810361179657507ffce698f7000000000000000000000000000000000000000000000000000000005f5260045260245ffd5b6003146117a05750565b7fd78bce0c000000000000000000000000000000000000000000000000000000005f5260045260245ffd5b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602160045260245ffd5b91907f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0841161187c579160209360809260ff5f9560405194855216868401526040830152606082015282805260015afa15610e4e575f5173ffffffffffffffffffffffffffffffffffffffff81161561187257905f905f90565b505f906001905f90565b5050505f9160039190565b906118c4575080511561189c57805190602001fd5b7fd6bda275000000000000000000000000000000000000000000000000000000005f5260045ffd5b81511580611917575b6118d5575090565b73ffffffffffffffffffffffffffffffffffffffff907f9996b315000000000000000000000000000000000000000000000000000000005f521660045260245ffd5b50803b156118cd56fea2646970667358221220651eb37c74c23e38e45c0351357a8f388c5ac5b8c510dae0634e05a36c74def264736f6c634300081c0033f0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a000000000000000000000000005ff137d4b0fdcd49dca30c7cf57e578a026d2789
Deployed Bytecode
0x608080604052600436101561001c575b50361561001a575f80fd5b005b5f905f3560e01c90816301ffc9a71461118757508063150b7a02146110fa57806315f2611214610f9f57806319822f7c14610e595780634a58db1914610d945780634d44560d14610c8f5780634f1ef2861461094757806352d1902d1461088957806374420f4c146107e45780638da5cb5b14610793578063ad3cb1cc14610710578063b0d691fe146106a1578063bc197c81146105cf578063c399ec881461051d578063c4d66de81461026d578063d087d288146101715763f23a6e610361000f573461016e5760a07ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261016e57610116611274565b5061011f611297565b5060843567ffffffffffffffff811161016c576101409036906004016112ba565b505060206040517ff23a6e61000000000000000000000000000000000000000000000000000000008152f35b505b80fd5b503461016e57807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261016e57604051907f35567e1a00000000000000000000000000000000000000000000000000000000825230600483015280602483015260208260448173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000005ff137d4b0fdcd49dca30c7cf57e578a026d2789165afa908115610261579061022a575b602090604051908152f35b506020813d602011610259575b8161024460209383611319565b81010312610255576020905161021f565b5f80fd5b3d9150610237565b604051903d90823e3d90fd5b503461016e5760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261016e576102a5611274565b7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00549060ff8260401c16159167ffffffffffffffff811680159081610515575b600114908161050b575b159081610502575b506104da5790818360017fffffffffffffffffffffffffffffffffffffffffffffffff000000000000000073ffffffffffffffffffffffffffffffffffffffff9516177ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a0055610485575b501690817fffffffffffffffffffffffff00000000000000000000000000000000000000008454161783556040519173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000005ff137d4b0fdcd49dca30c7cf57e578a026d2789167f47e55c76e7a6f1fd8996a1da8008c1ea29699cca35e7bcd057f2dec313b6e5de8580a36103f3575080f35b60207fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d2917fffffffffffffffffffffffffffffffffffffffffffffff00ffffffffffffffff7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a0054167ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a005560018152a180f35b7fffffffffffffffffffffffffffffffffffffffffffffff0000000000000000001668010000000000000001177ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00555f610361565b6004847ff92ee8a9000000000000000000000000000000000000000000000000000000008152fd5b9050155f6102f7565b303b1591506102ef565b8491506102e5565b503461016e57807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261016e57604051907f70a0823100000000000000000000000000000000000000000000000000000000825230600483015260208260248173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000005ff137d4b0fdcd49dca30c7cf57e578a026d2789165afa908115610261579061022a57602090604051908152f35b503461016e5760a07ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261016e57610607611274565b50610610611297565b5060443567ffffffffffffffff811161016c576106319036906004016112e8565b505060643567ffffffffffffffff811161016c576106539036906004016112e8565b505060843567ffffffffffffffff811161016c576106759036906004016112ba565b505060206040517fbc197c81000000000000000000000000000000000000000000000000000000008152f35b503461016e57807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261016e57602060405173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000005ff137d4b0fdcd49dca30c7cf57e578a026d2789168152f35b503461016e57807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261016e575061078f604051610751604082611319565b600581527f352e302e3000000000000000000000000000000000000000000000000000000060208201526040519182916020835260208301906113f7565b0390f35b503461016e57807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261016e5773ffffffffffffffffffffffffffffffffffffffff6020915416604051908152f35b503461016e5760807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261016e578061081d611274565b60443567ffffffffffffffff81116108855782916108426108609236906004016112ba565b929061084f60643561148b565b6108576114f1565b5a9336916113c1565b916020835193019160243591f1156108755780f35b61087d6115b6565b602081519101fd5b5050fd5b503461016e57807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261016e5773ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000003b589d90c8dc737b7ca9724a4bd4d7182f80672e16300361091f5760206040517f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc8152f35b807fe07c8dba0000000000000000000000000000000000000000000000000000000060049252fd5b5060407ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261016e5761097a611274565b9060243567ffffffffffffffff811161016c573660238201121561016c576109ac9036906024816004013591016113c1565b73ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000003b589d90c8dc737b7ca9724a4bd4d7182f80672e16803014908115610c4d575b50610c25576109fb611657565b73ffffffffffffffffffffffffffffffffffffffff831690604051937f52d1902d000000000000000000000000000000000000000000000000000000008552602085600481865afa80958596610bed575b50610a7d57602484847f4c9c8ce3000000000000000000000000000000000000000000000000000000008252600452fd5b9091847f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc8103610bc25750813b15610b9757807fffffffffffffffffffffffff00000000000000000000000000000000000000007f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc5416177f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc557fbc7cd75a20ee27fd9adebab32041f755214dbc6bffa90cc0225b39da2e5c2d3b8480a28151839015610b645780836020610b6095519101845af4610b5a611628565b91611887565b5080f35b50505034610b6f5780f35b807fb398979f0000000000000000000000000000000000000000000000000000000060049252fd5b7f4c9c8ce3000000000000000000000000000000000000000000000000000000008452600452602483fd5b7faa1d49a4000000000000000000000000000000000000000000000000000000008552600452602484fd5b9095506020813d602011610c1d575b81610c0960209383611319565b81010312610c195751945f610a4c565b8480fd5b3d9150610bfc565b6004827fe07c8dba000000000000000000000000000000000000000000000000000000008152fd5b905073ffffffffffffffffffffffffffffffffffffffff7f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc541614155f6109ee565b503461016e5760407ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261016e578060043573ffffffffffffffffffffffffffffffffffffffff8116809103610d9157610ce9611657565b73ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000005ff137d4b0fdcd49dca30c7cf57e578a026d27891690813b156108855782916044839260405194859384927f205c2878000000000000000000000000000000000000000000000000000000008452600484015260243560248401525af18015610d8657610d755750f35b81610d7f91611319565b61016e5780f35b6040513d84823e3d90fd5b50fd5b505f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126102555773ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000005ff137d4b0fdcd49dca30c7cf57e578a026d278916803b15610255575f602491604051928380927fb760faf900000000000000000000000000000000000000000000000000000000825230600483015234905af18015610e4e57610e42575080f35b61001a91505f90611319565b6040513d5f823e3d90fd5b346102555760607ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126102555760043567ffffffffffffffff8111610255576101207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc82360301126102555760443573ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000005ff137d4b0fdcd49dca30c7cf57e578a026d2789163303610f4157610f19602092602435906004016115d0565b9080610f29575b50604051908152f35b5f80808093335af150610f3a611628565b5082610f20565b60646040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601c60248201527f6163636f756e743a206e6f742066726f6d20456e747279506f696e74000000006044820152fd5b346102555760407ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126102555760043567ffffffffffffffff811161025557610fee9036906004016112e8565b610ff960243561148b565b6110016114f1565b5f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffa183360301905b8281101561001a578060051b8401358281121561025557840180359073ffffffffffffffffffffffffffffffffffffffff82168203610255575f918161108161107660408695018361143a565b91905a9236916113c1565b926020808551950193013591f11561109b57600101611029565b600183036110ab5761087d6115b6565b6110b36115b6565b906110f66040519283927f5a15467500000000000000000000000000000000000000000000000000000000845260048401526040602484015260448301906113f7565b0390fd5b346102555760807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261025557611131611274565b5061113a611297565b5060643567ffffffffffffffff81116102555761115b9036906004016112ba565b505060206040517f150b7a02000000000000000000000000000000000000000000000000000000008152f35b346102555760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261025557600435907fffffffff00000000000000000000000000000000000000000000000000000000821680920361025557817f150b7a02000000000000000000000000000000000000000000000000000000006020931490811561124a575b8115611220575b5015158152f35b7f01ffc9a70000000000000000000000000000000000000000000000000000000091501483611219565b7f4e2312e00000000000000000000000000000000000000000000000000000000081149150611212565b6004359073ffffffffffffffffffffffffffffffffffffffff8216820361025557565b6024359073ffffffffffffffffffffffffffffffffffffffff8216820361025557565b9181601f840112156102555782359167ffffffffffffffff8311610255576020838186019501011161025557565b9181601f840112156102555782359167ffffffffffffffff8311610255576020808501948460051b01011161025557565b90601f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0910116810190811067ffffffffffffffff82111761135a57604052565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b67ffffffffffffffff811161135a57601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe01660200190565b9291926113cd82611387565b916113db6040519384611319565b829481845281830111610255578281602093845f960137010152565b907fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f602080948051918291828752018686015e5f8582860101520116010190565b9035907fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe181360301821215610255570180359067ffffffffffffffff82116102555760200191813603831361025557565b421161149357565b60646040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601060248201527f6163636f756e743a2045787069726564000000000000000000000000000000006044820152fd5b73ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000005ff137d4b0fdcd49dca30c7cf57e578a026d27891633148015611596575b1561153857565b60646040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602060248201527f6163636f756e743a206e6f74204f776e6572206f7220456e747279506f696e746044820152fd5b5073ffffffffffffffffffffffffffffffffffffffff5f54163314611531565b3d604051906020818301016040528082525f602083013e90565b9061161961161073ffffffffffffffffffffffffffffffffffffffff9261160a611603855f54169661010081019061143a565b36916113c1565b906116e6565b90929192611720565b1603611623575f90565b600190565b3d15611652573d9061163982611387565b916116476040519384611319565b82523d5f602084013e565b606090565b73ffffffffffffffffffffffffffffffffffffffff5f5416331480156116dd575b1561167f57565b60646040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600a60248201527f6f6e6c79206f776e6572000000000000000000000000000000000000000000006044820152fd5b50303314611678565b81519190604183036117165761170f9250602082015190606060408401519301515f1a906117f8565b9192909190565b50505f9160029190565b60048110156117cb5780611732575050565b60018103611762577ff645eedf000000000000000000000000000000000000000000000000000000005f5260045ffd5b6002810361179657507ffce698f7000000000000000000000000000000000000000000000000000000005f5260045260245ffd5b6003146117a05750565b7fd78bce0c000000000000000000000000000000000000000000000000000000005f5260045260245ffd5b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602160045260245ffd5b91907f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0841161187c579160209360809260ff5f9560405194855216868401526040830152606082015282805260015afa15610e4e575f5173ffffffffffffffffffffffffffffffffffffffff81161561187257905f905f90565b505f906001905f90565b5050505f9160039190565b906118c4575080511561189c57805190602001fd5b7fd6bda275000000000000000000000000000000000000000000000000000000005f5260045ffd5b81511580611917575b6118d5575090565b73ffffffffffffffffffffffffffffffffffffffff907f9996b315000000000000000000000000000000000000000000000000000000005f521660045260245ffd5b50803b156118cd56fea2646970667358221220651eb37c74c23e38e45c0351357a8f388c5ac5b8c510dae0634e05a36c74def264736f6c634300081c0033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
0000000000000000000000005ff137d4b0fdcd49dca30c7cf57e578a026d2789
-----Decoded View---------------
Arg [0] : anEntryPoint (address): 0x5FF137D4b0FDCD49DcA30c7CF57E578a026d2789
-----Encoded View---------------
1 Constructor Arguments found :
Arg [0] : 0000000000000000000000005ff137d4b0fdcd49dca30c7cf57e578a026d2789
Deployed Bytecode Sourcemap
736:3022:19:-:0;;;;;;;;;;-1:-1:-1;736:3022:19;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:::i;:::-;;;;:::i;:::-;;;;;;;;;;;;;;;;:::i;:::-;;;;;;901:43:20;736:3022:19;;;;;;;;;;;;;;;;;;;;;;1056:39:21;736:3022:19;1056:39:21;;1086:4;736:3022:19;1056:39:21;;736:3022:19;;;;;;;1190:11;1056:39:21;1190:11:19;736:3022;1190:11;736:3022;1056:39:21;;;;;;;;;;736:3022:19;;;;;;;;;1056:39:21;;736:3022:19;1056:39:21;;736:3022:19;1056:39:21;;;;;;736:3022:19;1056:39:21;;;:::i;:::-;;;736:3022:19;;;;;;;1056:39:21;;736:3022:19;-1:-1:-1;736:3022:19;;1056:39:21;;;-1:-1:-1;1056:39:21;;;736:3022:19;;;;;;;;;;;;;;;;;;;;;;;;:::i;:::-;8837:64:4;736:3022:19;;;;;;;4301:16:4;736:3022:19;;;;4726:16:4;;:34;;;;736:3022:19;4805:1:4;4790:16;:50;;;;736:3022:19;4855:13:4;:30;;;;736:3022:19;4851:91:4;;;736:3022:19;;;4805:1:4;736:3022:19;;;;;8837:64:4;736:3022:19;4979:67:4;;736:3022:19;;;;;;;;;;;;;;2220:11;736:3022;2220:11;736:3022;2195:44;;;;5066:101:4;;736:3022:19;;;5066:101:4;736:3022:19;5142:14:4;736:3022:19;;8837:64:4;736:3022:19;;8837:64:4;736:3022:19;4805:1:4;736:3022:19;;5142:14:4;736:3022:19;;4979:67:4;736:3022:19;;;;8837:64:4;736:3022:19;4979:67:4;;;4851:91;736:3022:19;4908:23:4;;;;;4855:30;4872:13;;;4855:30;;;4790:50;4818:4;4810:25;:30;;-1:-1:-1;4790:50:4;;4726:34;;;-1:-1:-1;4726:34:4;;736:3022:19;;;;;;;;;;;;;;3069:37;736:3022;3069:37;;3100:4;736:3022;3069:37;;736:3022;;1190:11;3069:37;1190:11;736:3022;1190:11;736:3022;3069:37;;;;;;;;;;736:3022;;;;;;;;;;;;;;;;;;;;;;:::i;:::-;;;;:::i;:::-;;;;;;;;;;;;;;;;:::i;:::-;;;;;;;;;;;;;;;;;:::i;:::-;;;;;;;;;;;;;;;;;:::i;:::-;;;;;;1166:48:20;736:3022:19;;;;;;;;;;;;;;;;;;;1190:11;736:3022;;;;;;;;;;;;;;;;;;;;;;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:::i;:::-;;;;;;;;;;;;;;;;;;:::i;:::-;;;1513:8:21;736:3022:19;;1513:8:21;:::i;:::-;;;:::i;:::-;1604:9;736:3022:19;;;;:::i;:::-;368:118:31;736:3022:19;368:118:31;;;;736:3022:19;;;368:118:31;;1628:3:21;1624:61;;736:3022:19;;1624:61:21;2059:16:31;;:::i;:::-;736:3022:19;1837:95:31;;;;;736:3022:19;;;;;;;;;;;;;;;;;4849:6:5;736:3022:19;4840:4:5;4832:23;4828:145;;736:3022:19;;;811:66:2;736:3022:19;;;4828:145:5;4933:29;;736:3022:19;4933:29:5;;;736:3022:19;;;;;;;;;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:::i;:::-;;4426:6:5;736:3022:19;4417:4:5;;4409:23;:120;;;;;736:3022:19;4392:251:5;;;3708:19:19;;:::i;:::-;736:3022;;;;;;5890:52:5;736:3022:19;5890:52:5;;736:3022:19;5890:52:5;736:3022:19;5890:52:5;;;;;;;;;;736:3022:19;-1:-1:-1;5886:437:5;;736:3022:19;6252:60:5;;;;;736:3022:19;;6252:60:5;5886:437;5984:40;;;811:66:2;5984:40:5;;5980:120;;1748:29:2;;;:34;1744:119;;736:3022:19;;811:66:2;736:3022:19;;;811:66:2;736:3022:19;2407:36:2;;;;736:3022:19;;;;2458:15:2;:11;;4049:25:8;;736:3022:19;4091:55:8;4049:25;;;;;;;;;:::i;:::-;4091:55;;:::i;:::-;;736:3022:19;;2454:148:2;6163:9;;;;6159:70;;736:3022:19;;6159:70:2;6199:19;;736:3022:19;6199:19:2;;;1744:119;1805:47;;;736:3022:19;;;1805:47:2;;5980:120:5;6051:34;;;736:3022:19;;;6051:34:5;;5890:52;;;;736:3022:19;5890:52:5;;736:3022:19;5890:52:5;;;;;;736:3022:19;5890:52:5;;;:::i;:::-;;;736:3022:19;;;;;5890:52:5;;;;736:3022:19;;;;5890:52:5;;;-1:-1:-1;5890:52:5;;4392:251;736:3022:19;4603:29:5;;;;;4409:120;736:3022:19;;;811:66:2;736:3022:19;;4487:42:5;;4409:120;;;736:3022:19;;;;;;;;;;;;;;;;;;;;;;;1001:61;;:::i;:::-;736:3022;1190:11;736:3022;3560:48;;;;;;736:3022;;3560:48;736:3022;;;;3560:48;;;;;736:3022;3560:48;;736:3022;3560:48;;736:3022;;;;;;;3560:48;;;;;;;;736:3022;;3560:48;;;;;:::i;:::-;736:3022;;3560:48;736:3022;3560:48;736:3022;;;;;;;;;;;;;;;;;;;;;;1190:11;736:3022;3243:55;;;;;736:3022;3243:55;736:3022;;;3243:55;;;;736:3022;3243:55;;3292:4;736:3022;3243:55;;736:3022;3273:9;3243:55;;;;;;;;;736:3022;;;3243:55;;;;736:3022;3243:55;;:::i;:::-;736:3022;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;1190:11;736:3022;3290:10:21;:35;736:3022:19;;2853:38:21;736:3022:19;;;;;;;2853:38:21;:::i;:::-;6142:24;;6138:267;;736:3022:19;;;;;;;;6138:267:21;736:3022:19;3290:10:21;;;;;6200:94;;;;;:::i;:::-;;6138:267;;;736:3022:19;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:::i;:::-;2046:8:21;736:3022:19;;2046:8:21;:::i;:::-;;;:::i;:::-;736:3022:19;;;;;;2140:412:21;2177:3;2160:15;;;;;;736:3022:19;;;;;;;;;;;;;;;;;;;;;;;;;2284:9:21;;736:3022:19;2284:9:21;736:3022:19;2284:9:21;;;;;:::i;:::-;2295;;;736:3022:19;;;;:::i;:::-;368:118:31;736:3022:19;368:118:31;;;;;2272:10:21;;736:3022:19;368:118:31;;2323:3:21;2319:223;;736:3022:19;;2145:13:21;;2319:223;736:3022:19;2350:16:21;;736:3022:19;;2059:16:31;;:::i;2346:182:21:-;2487:21;;:::i;:::-;736:3022:19;;;;2471:38:21;;;;;;736:3022:19;2471:38:21;;736:3022:19;;;;;;;;;;;:::i;:::-;2471:38:21;;;736:3022:19;;;;;;;;;;;;;:::i;:::-;;;;:::i;:::-;;;;;;;;;;;;;;;;:::i;:::-;;;;;;665:41:20;736:3022:19;;;;;;;;;;;;;;;;;;;;;;;;;1349:48:20;1364:33;736:3022:19;1349:48:20;;:113;;;;;736:3022:19;1349:169:20;;;;736:3022:19;;;;;;;1349:169:20;1493:25;1478:40;;;1349:169;;;:113;1428:34;1413:49;;;-1:-1:-1;1349:113:20;;736:3022:19;;;;;;;;;;;:::o;:::-;;;;;;;;;;;:::o;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:::o;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:::o;:::-;;;;;;;;;;;;;;;;;;;;:::o;:::-;;-1:-1:-1;736:3022:19;;;;;-1:-1:-1;736:3022:19;;;;;;;;;;;;;;:::o;:::-;;;;;;;:::i;:::-;;;;;;;;:::i;:::-;;;;;;;;;;;;;;;;;-1:-1:-1;736:3022:19;;;;;;:::o;:::-;;;;;;;;;;;;;;;;;;;;-1:-1:-1;736:3022:19;;;;;;;;;;;:::o;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:::o;2984:138:21:-;3080:15;-1:-1:-1;736:3022:19;;2984:138:21:o;736:3022:19:-;;;;;;;;;;;;;;;;;;;;;;;2318:181;736:3022;1190:11;736:3022;2397:10;:35;:58;;;;2318:181;736:3022;;;2318:181::o;736:3022::-;;;;;;;;;;;;;;;;;;;;;;;2397:58;736:3022;;2450:5;736:3022;;2397:10;2436:19;2397:58;;1176:508:31;1273:405;;;;;;;;;;;;;;736:3022:19;1273:405:31;;;;1176:508;:::o;2554:369:19:-;;3927:8:13;3871:27;736:3022:19;2554:369;736:3022;2818:16;736:3022;;;;2818:16;;;;;;:::i;:::-;736:3022;;;:::i;:::-;3871:27:13;;:::i;:::-;3927:8;;;;;:::i;:::-;736:3022:19;2783:52;2779:98;;736:3022;2554:369;:::o;2779:98::-;301:1:22;2849:28:19;:::o;736:3022::-;;;;;;;;;;:::i;:::-;;;;;;;;:::i;:::-;;;;-1:-1:-1;736:3022:19;;;;:::o;:::-;;;:::o;1417:234::-;736:3022;1593:5;736:3022;;1579:10;:19;:50;;;;1417:234;736:3022;;;1417:234::o;736:3022::-;;;;;;;;;;;;;;;;;;;;;;;1579:50;1624:4;;1579:10;1602:27;1579:50;;2129:778:13;736:3022:19;;;2129:778:13;2319:2;2299:22;;2319:2;;2751:25;2535:196;;;;;;;;;;;;;;;-1:-1:-1;2535:196:13;2751:25;;:::i;:::-;2744:32;;;;;:::o;2295:606::-;2807:83;;2823:1;2807:83;2827:35;2807:83;;:::o;7280:532::-;736:3022:19;;;;;;7366:29:13;;;7411:7;;:::o;7362:444::-;736:3022:19;7462:38:13;;736:3022:19;;7523:23:13;7375:20;7523:23;736:3022:19;7375:20:13;7523:23;7458:348;7576:35;7567:44;;7576:35;;7634:46;;7375:20;7634:46;736:3022:19;;;7375:20:13;7634:46;7563:243;7710:30;7701:39;7697:109;;7563:243;7280:532::o;7697:109::-;7763:32;7375:20;7763:32;736:3022:19;;;7375:20:13;7763:32;736:3022:19;;7375:20:13;736:3022:19;;;;;7375:20:13;736:3022:19;5203:1551:13;;;6283:66;6270:79;;6266:164;;736:3022:19;;;;;;-1:-1:-1;736:3022:19;;;;;;;;;;;;;;;;;;;6541:24:13;;;;;;;;;-1:-1:-1;6541:24:13;736:3022:19;;;6579:20:13;6575:113;;6698:49;-1:-1:-1;6698:49:13;-1:-1:-1;5203:1551:13;:::o;6575:113::-;6615:62;-1:-1:-1;6615:62:13;6541:24;6615:62;-1:-1:-1;6615:62:13;:::o;6266:164::-;6365:54;;;6381:1;6365:54;6385:30;6365:54;;:::o;4421:582:8:-;;4593:8;;-1:-1:-1;736:3022:19;;5674:21:8;:17;;5799:158;;;;;;5670:354;5994:19;5694:1;5994:19;;5694:1;5994:19;4589:408;736:3022:19;;4841:22:8;:49;;;4589:408;4837:119;;4969:17;;:::o;4837:119::-;736:3022:19;4917:24:8;;4862:1;4917:24;736:3022:19;4917:24:8;736:3022:19;;4862:1:8;4917:24;4841:49;4867:18;;;:23;4841:49;
Swarm Source
ipfs://651eb37c74c23e38e45c0351357a8f388c5ac5b8c510dae0634e05a36c74def2
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 34 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.