BERA Price: $3.68 (+0.13%)

Contract

0x42069E3BF367C403b632CF9cD5a8d61e2c0c44fC

Overview

BERA Balance

Berachain LogoBerachain LogoBerachain Logo0 BERA

BERA Value

$0.00

Token Holdings

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To
Mint40793582025-04-23 8:44:574 hrs ago1745397897IN
0x42069E3B...e2c0c44fC
0 BERA0.000049120.5
Mint40640802025-04-23 0:21:4813 hrs ago1745367708IN
0x42069E3B...e2c0c44fC
0 BERA0.000000110.001202
Mint40636112025-04-23 0:06:2313 hrs ago1745366783IN
0x42069E3B...e2c0c44fC
0 BERA0.000000010.00010003
Mint40621192025-04-22 23:17:2314 hrs ago1745363843IN
0x42069E3B...e2c0c44fC
0 BERA0.000000110.00117533
Mint40612342025-04-22 22:48:1514 hrs ago1745362095IN
0x42069E3B...e2c0c44fC
0 BERA0.000000010.000186
Mint40612182025-04-22 22:47:4414 hrs ago1745362064IN
0x42069E3B...e2c0c44fC
0 BERA0.000000020.00025
Mint40612042025-04-22 22:47:1714 hrs ago1745362037IN
0x42069E3B...e2c0c44fC
0 BERA0.000000020.000198
Mint40606832025-04-22 22:30:0815 hrs ago1745361008IN
0x42069E3B...e2c0c44fC
0 BERA0.000000280.002754
Mint40567792025-04-22 20:21:5317 hrs ago1745353313IN
0x42069E3B...e2c0c44fC
0 BERA00.0000001
Mint40515762025-04-22 17:32:1620 hrs ago1745343136IN
0x42069E3B...e2c0c44fC
0 BERA0.000000150.00159697
Mint40512792025-04-22 17:22:3520 hrs ago1745342555IN
0x42069E3B...e2c0c44fC
0 BERA0.000000040.00049689
Mint40512412025-04-22 17:21:2020 hrs ago1745342480IN
0x42069E3B...e2c0c44fC
0 BERA0.000000090.00089319
Mint40506122025-04-22 17:00:4420 hrs ago1745341244IN
0x42069E3B...e2c0c44fC
0 BERA00.00000001
Mint40505722025-04-22 16:59:2620 hrs ago1745341166IN
0x42069E3B...e2c0c44fC
0 BERA00.0000001
Mint40461982025-04-22 14:36:0323 hrs ago1745332563IN
0x42069E3B...e2c0c44fC
0 BERA0.000001890.018384
Mint40364112025-04-22 9:18:0328 hrs ago1745313483IN
0x42069E3B...e2c0c44fC
0 BERA00.00000011
Mint40325042025-04-22 7:11:2930 hrs ago1745305889IN
0x42069E3B...e2c0c44fC
0 BERA0.000049130.5
Mint40309202025-04-22 6:20:1531 hrs ago1745302815IN
0x42069E3B...e2c0c44fC
0 BERA0.000014730.150001
Mint40215762025-04-22 1:17:5236 hrs ago1745284672IN
0x42069E3B...e2c0c44fC
0 BERA00.0000001
Mint40147642025-04-21 21:34:1340 hrs ago1745271253IN
0x42069E3B...e2c0c44fC
0 BERA00.0000001
Mint40124852025-04-21 20:18:4241 hrs ago1745266722IN
0x42069E3B...e2c0c44fC
0 BERA00.00000011
Mint40094192025-04-21 18:36:3743 hrs ago1745260597IN
0x42069E3B...e2c0c44fC
0 BERA0.000051520.5
Mint40074982025-04-21 17:33:0644 hrs ago1745256786IN
0x42069E3B...e2c0c44fC
0 BERA00.00000006
Mint39927892025-04-21 9:29:232 days ago1745227763IN
0x42069E3B...e2c0c44fC
0 BERA0.000001040.01
Mint39911832025-04-21 8:34:042 days ago1745224444IN
0x42069E3B...e2c0c44fC
0 BERA0.000049120.5
View all transactions

Latest 6 internal transactions

Parent Transaction Hash Block From To
20421532025-03-07 21:52:4846 days ago1741384368
0x42069E3B...e2c0c44fC
 Contract Creation0 BERA
20421442025-03-07 21:52:3146 days ago1741384351
0x42069E3B...e2c0c44fC
 Contract Creation0 BERA
20421352025-03-07 21:52:1346 days ago1741384333
0x42069E3B...e2c0c44fC
 Contract Creation0 BERA
20421212025-03-07 21:51:4746 days ago1741384307
0x42069E3B...e2c0c44fC
 Contract Creation0 BERA
20421002025-03-07 21:51:0846 days ago1741384268
0x42069E3B...e2c0c44fC
 Contract Creation0 BERA
20413922025-03-07 21:28:4446 days ago1741382924
0x42069E3B...e2c0c44fC
 Contract Creation0 BERA
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
Henlocker

Compiler Version
v0.8.25+commit.b61c2a91

Optimization Enabled:
Yes with 200 runs

Other Settings:
cancun EvmVersion
File 1 of 33 : Henlocker.sol
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.20;

import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {ReentrancyGuard} from "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
import {Ownable} from "@openzeppelin/contracts/access/Ownable.sol";
import {Pausable} from "@openzeppelin/contracts/utils/Pausable.sol";
import {FixedPointMathLib} from "@solady/utils/FixedPointMathLib.sol";
import {IOracleChainsight} from "./interfaces/IOracleChainsight.sol";
import {henlocked} from "./multi/henlocked.sol";
import {henlockedToken} from "./single/henlockedERC20.sol";

interface IReservoir {
    function matchMint(uint256 amount) external returns (uint256);
    function started() external view returns (bool);
    function endTime() external view returns (uint256);
    function incrementMatched(uint256 amount) external;
    function canMatch() external view returns (bool);
}

// Henlocker is the core contract for the HENLOCKED system. It manages the minting
// and redemption of HENLOCKED tokens based on predefined strike prices. Based on the HodlMoney price lock contract.
contract Henlocker is ReentrancyGuard, Ownable, Pausable {
    using SafeERC20 for IERC20;
    using FixedPointMathLib for uint256;
    /*###############################################################
                                    EVENTS
    ###############################################################*/

    event SetTreasury(address treasury);
    event SetFee(uint256 fee);
    event DeployERC20(uint64 indexed strike, address token);
    event Mint(address indexed user, uint256 indexed strike, uint256 amount);
    event MintFromReservoir(address indexed reservoir, uint64 indexed strike, uint256 amount);
    event Redeem(address indexed user, uint64 indexed strike, uint256 amount);
    event RoundOpened(uint48 indexed epochId, uint64 indexed strike, uint256 depositLimit);
    event RoundClosed(uint48 indexed epochId, uint64 indexed strike);
    event DepositLimitUpdated(uint48 indexed epochId, uint64 indexed strike, uint256 newDepositLimit);
    event OracleSenderUpdated(address indexed newSender);
    event OracleKeyUpdated(bytes32 indexed newKey);
    event OracleUpdated(address indexed newOracle);
    event DepositsPaused(uint48 indexed epochId, uint64 indexed strike);
    event DepositsUnpaused(uint48 indexed epochId, uint64 indexed strike);

    /*###############################################################
                                ERRORS
    ###############################################################*/

    error ZeroAddress();
    error ZeroOracleAddress();
    error ZeroTreasuryAddress();
    error ZeroOracleSenderAddress();
    error MaxFeeExceeded();
    error StrikeTooLow();
    error InvalidDepositLimit();
    error RoundAlreadyExistsOrNotClosed();
    error RoundNotOpened();
    error RoundIsClosed();
    error DepositsArePaused();
    error ZeroMint();
    error AmountExceedsDepositLimit();
    error ZeroRedeemAmount();
    error CannotRedeemAtThisTime();
    error InsufficientHenlockedBalance();
    error AlreadyDeployed();
    error DepositsAlreadyPaused();
    error DepositsNotPaused();
    error NewLimitTooLow();
    error StaleOracleData();
    error InvalidEpochStrike();

    /*###############################################################
                                STRUCTS
    ###############################################################*/
    struct EpochInfo {
        uint64 strike;
        bool closed;
        bool depositsPaused; // Flag to pause deposits
        uint256 timestamp;
        uint256 depositLimit; // Max deposits allowed for this epoch
        uint256 totalDeposits; // Tracks deposits for this specific epoch
        address reservoir; // Address of the Reservoir contract for this epoch
    }
    /*###############################################################
                                STORAGE
    ###############################################################*/

    uint256 public constant FEE_BASIS = 100_00;
    uint256 public constant MAX_FEE = 10_00; // 10%

    uint48 public nextId = 1;
    uint256 public fee = 0;

    IERC20 public immutable asset; // Direct reference to HENLO token
    IOracleChainsight public oracle;
    henlocked public immutable hodlMulti;
    address public treasury;

    address public oracleSender;
    bytes32 private oracleKey;

    // Keep track of deployed ERC20 HENLOCKED tokens
    mapping(uint64 strike => IERC20 token) public deployments;
    mapping(uint48 epochId => EpochInfo) public infos;
    mapping(uint64 strike => uint48 epochId) public epochs;

    /*###############################################################
                                CONSTRUCTOR
    ###############################################################*/
    constructor(address asset_, address oracle_, address treasury_, address oracleSender_, bytes32 oracleKey_)
        ReentrancyGuard()
        Ownable(msg.sender)
        Pausable()
    {
        if (asset_ == address(0)) revert ZeroAddress();
        if (oracle_ == address(0)) revert ZeroOracleAddress();
        if (treasury_ == address(0)) revert ZeroTreasuryAddress();
        if (oracleSender_ == address(0)) revert ZeroOracleSenderAddress();

        asset = IERC20(asset_);
        oracle = IOracleChainsight(oracle_);
        treasury = treasury_;
        oracleSender = oracleSender_;
        oracleKey = oracleKey_;

        hodlMulti = new henlocked("");
    }

    /*###############################################################
                            ADMIN FUNCTIONS
    ###############################################################*/

    /**
     * @notice Pause the contract
     */
    function pause() external onlyOwner {
        _pause();
    }

    /**
     * @notice Unpause the contract
     */
    function unpause() external onlyOwner {
        _unpause();
    }

    /**
     * @notice Set a new treasury address
     * @param treasury_ The new treasury address
     */
    function setTreasury(address treasury_) external nonReentrant onlyOwner {
        if (treasury_ == address(0)) revert ZeroAddress();
        treasury = treasury_;
        emit SetTreasury(treasury);
    }

    /**
     * @notice Set a new fee
     * @param fee_ The new fee value
     */
    function setFee(uint256 fee_) external nonReentrant onlyOwner {
        if (fee_ > MAX_FEE) revert MaxFeeExceeded();
        fee = fee_;
        emit SetFee(fee);
    }

    /**
     * @notice Open a new round for minting HENLOCKED tokens
     * @param strike The strike price for the new round
     * @param depositLimit The maximum deposits allowed for this epoch
     * @param reservoir The address of the Reservoir contract
     * @return The created epochId
     */
    function openRound(uint64 strike, uint256 depositLimit, address reservoir)
        external
        nonReentrant
        onlyOwner
        returns (uint48)
    {
        (uint64 currentPrice, uint64 timestamp) = oracle.readAsUint64WithTimestamp(oracleSender, oracleKey);
        if (strike <= currentPrice) revert StrikeTooLow();
        if (timestamp + 1 hours < uint64(block.timestamp)) revert StaleOracleData();

        uint256 existingSupply = hodlMulti.totalSupply(strike);
        if (depositLimit <= existingSupply) revert InvalidDepositLimit();

        uint48 existingEpochId = epochs[strike];
        if (existingEpochId != 0 && !infos[existingEpochId].closed) revert RoundAlreadyExistsOrNotClosed();

        uint48 epochId = nextId++;

        infos[epochId] = EpochInfo({
            strike: strike,
            closed: false,
            depositsPaused: false,
            timestamp: timestamp,
            depositLimit: depositLimit,
            totalDeposits: existingSupply,
            reservoir: reservoir
        });

        epochs[strike] = epochId;

        emit RoundOpened(epochId, strike, depositLimit);

        return epochId;
    }

    /*###############################################################
                            MINTING AND REDEEMING
    ###############################################################*/

    /**
     * @notice Preview minting to calculate fee
     * @param value The amount to be minted
     * @return depositAfterFee The net value after fee
     * @return feeAmount The fee amount
     */
    function previewMint(uint256 value) external view returns (uint256 depositAfterFee, uint256 feeAmount) {
        if (fee == 0) {
            return (value, 0);
        } else {
            uint256 feeValue = value.mulDivUp(fee, FEE_BASIS);
            return (value - feeValue, feeValue);
        }
    }

    /**
     * @notice Mint HENLOCKED tokens by depositing HENLO
     * @param strike The strike price for minting
     * @param amount The amount of HENLO to deposit
     * @return The amount of HENLOCKED tokens minted
     */
    function mint(uint64 strike, uint256 amount, uint256 minimumWhaleMatch)
        external
        nonReentrant
        whenNotPaused
        returns (uint256)
    {
        uint48 epochId = epochs[strike];
        if (epochId == 0) revert RoundNotOpened();

        EpochInfo storage info = infos[epochId];
        if (info.closed) revert RoundIsClosed();
        if (info.depositsPaused) revert DepositsArePaused();
        if (amount == 0) revert ZeroMint();

        uint256 value = amount;
        uint256 feeValue = value.mulDivUp(fee, FEE_BASIS);
        value -= feeValue;

        // Security: Exclude fee from deposit limit calculation
        if (info.totalDeposits + value > info.depositLimit) revert AmountExceedsDepositLimit();

        uint256 y = 0;
        if (info.reservoir != address(0)) {
            IReservoir reservoir = IReservoir(info.reservoir);
            if (reservoir.canMatch()) {
                uint256 remainingCapacity = info.depositLimit - (info.totalDeposits + value);
                if (value < remainingCapacity) {
                    remainingCapacity = value;
                }
                y = reservoir.matchMint(remainingCapacity);
            }
        }

        info.totalDeposits += value; // Security: Track net deposit amount
        require(y >= minimumWhaleMatch, "Whale slippage");
        if (y > 0) {
            info.totalDeposits += y;
        }

        if (feeValue > 0) {
            asset.safeTransferFrom(msg.sender, treasury, feeValue);
        }
        asset.safeTransferFrom(msg.sender, address(this), value);

        if (y > 0) {
            IReservoir reservoir = IReservoir(info.reservoir);
            reservoir.incrementMatched(y);
            asset.safeTransferFrom(info.reservoir, address(this), y);
            hodlMulti.mint(info.reservoir, strike, y);
            emit MintFromReservoir(info.reservoir, strike, y);
        }

        hodlMulti.mint(msg.sender, strike, value);
        emit Mint(msg.sender, strike, value);

        return value;
    }

    /**
     * @notice Redeem HENLOCKED tokens for HENLO
     * @param strike The strike price of the HENLOCKED tokens
     * @param amount The amount of HENLOCKED tokens to redeem
     * @return The amount of HENLO redeemed
     */
    function redeem(uint64 strike, uint256 amount) external nonReentrant returns (uint256) {
        if (amount == 0) revert ZeroRedeemAmount();
        if (!canRedeem(strike)) revert CannotRedeemAtThisTime();
        if (hodlMulti.balanceOf(msg.sender, strike) < amount) revert InsufficientHenlockedBalance();

        hodlMulti.burn(msg.sender, strike, amount);
        _closeOutEpoch(strike);
        asset.safeTransfer(msg.sender, amount);

        emit Redeem(msg.sender, strike, amount);
        return amount;
    }

    /**
     * @notice Deploy a new ERC20 HENLOCKED token for a specific strike
     * @param strike The strike price for the HENLOCKED token
     * @return The address of the newly deployed HENLOCKED token
     */
    function deployERC20(uint64 strike) external nonReentrant returns (address) {
        if (address(deployments[strike]) != address(0)) revert AlreadyDeployed();

        henlockedToken hodl = new henlockedToken(address(hodlMulti), strike);
        hodlMulti.authorize(address(hodl));
        deployments[strike] = hodl;

        emit DeployERC20(strike, address(hodl));
        return address(hodl);
    }

    /*###############################################################
                            DEPOSIT MANAGEMENT
    ###############################################################*/

    /**
     * @notice Pause deposits for a specific strike
     * @param strike The strike price to pause deposits
     */
    function pauseDeposits(uint64 strike) external onlyOwner {
        uint48 epochId = epochs[strike];
        if (epochId == 0) revert RoundNotOpened();

        EpochInfo storage info = infos[epochId];
        if (info.closed) revert RoundIsClosed();
        if (info.depositsPaused) revert DepositsAlreadyPaused();

        info.depositsPaused = true;

        emit DepositsPaused(epochId, strike);
    }

    /**
     * @notice Unpause deposits for a specific strike
     * @param strike The strike price to unpause deposits
     */
    function unpauseDeposits(uint64 strike) external onlyOwner {
        uint48 epochId = epochs[strike];
        if (epochId == 0) revert RoundNotOpened();

        EpochInfo storage info = infos[epochId];
        if (info.closed) revert RoundIsClosed();
        if (!info.depositsPaused) revert DepositsNotPaused();

        info.depositsPaused = false;

        emit DepositsUnpaused(epochId, strike);
    }

    /**
     * @notice Update the deposit limit for a specific strike
     * @param strike The strike price to update
     * @param newDepositLimit The new deposit limit
     */
    function updateDepositLimit(uint64 strike, uint256 newDepositLimit) external nonReentrant onlyOwner {
        uint48 epochId = epochs[strike];
        if (epochId == 0) revert RoundNotOpened();

        EpochInfo storage info = infos[epochId];
        if (info.closed) revert RoundIsClosed();
        if (newDepositLimit < info.totalDeposits) revert NewLimitTooLow();

        info.depositLimit = newDepositLimit;

        emit DepositLimitUpdated(epochId, strike, newDepositLimit);
    }

    /*###############################################################
                            ORACLE MANAGEMENT
    ###############################################################*/

    /**
     * @notice Set a new oracle sender
     * @param newSender The new oracle sender address
     */
    function setOracleSender(address newSender) external onlyOwner {
        if (newSender == address(0)) revert ZeroAddress();
        oracleSender = newSender;
        emit OracleSenderUpdated(newSender);
    }

    /**
     * @notice Get the current oracle key
     * @return The current oracle key
     */
    function getOracleKey() external view returns (bytes32) {
        return oracleKey;
    }

    /**
     * @notice Set a new oracle key
     * @param newKey The new oracle key
     */
    function setOracleKey(bytes32 newKey) external onlyOwner {
        oracleKey = newKey;
        emit OracleKeyUpdated(newKey);
    }

    /**
     * @notice Update the oracle address
     * @param newOracle The new oracle contract address
     */
    function setOracle(address newOracle) external onlyOwner {
        oracle = IOracleChainsight(newOracle);
        emit OracleUpdated(newOracle);
    }

    /*###############################################################
                            VIEW FUNCTIONS
    ###############################################################*/

    /**
     * @notice Check if redemption is possible for a given strike
     * @param strike The strike price to check
     * @return True if redemption is possible, otherwise false
     */
    function canRedeem(uint64 strike) public view returns (bool) {
        uint48 epochId = epochs[strike];
        EpochInfo storage info = infos[epochId];

        // Security: Check closed status first to ensure redemption availability
        if (info.closed) {
            return true;
        }

        (uint64 currentPrice, uint64 timestamp) = oracle.readAsUint64WithTimestamp(oracleSender, oracleKey);
        if (timestamp + 1 hours < uint64(block.timestamp)) revert StaleOracleData();

        // Condition 1: Current price is above or equal to strike
        if (currentPrice >= strike && timestamp >= info.timestamp) {
            return true;
        }

        return false;
    }

    /**
     * @notice Get information about a specific round
     * @param strike The strike price of the round
     * @return exists Whether the round exists
     * @return closed Whether the round is closed
     * @return depositsPaused Whether deposits are paused for the round
     * @return timestamp The timestamp of the round
     * @return depositLimit The deposit limit of the round
     * @return totalDeposits The total deposits of the round
     * @return remainingCapacity The remaining deposit capacity of the round
     */
    function getRoundInfo(uint64 strike)
        external
        view
        returns (
            bool exists,
            bool closed,
            bool depositsPaused, // New return value
            uint256 timestamp,
            uint256 depositLimit,
            uint256 totalDeposits,
            uint256 remainingCapacity
        )
    {
        uint48 epochId = epochs[strike];
        if (epochId == 0) return (false, false, false, 0, 0, 0, 0);

        EpochInfo storage info = infos[epochId];
        return (
            true,
            info.closed,
            info.depositsPaused, // Return deposit pause status
            info.timestamp,
            info.depositLimit,
            info.totalDeposits,
            info.depositLimit - info.totalDeposits
        );
    }

    /*###############################################################
                            INTERNAL FUNCTIONS
    ###############################################################*/

    /**
     * @notice Close out an epoch if it hasn't been closed yet
     * @param strike The strike price of the epoch to close
     */
    function _closeOutEpoch(uint64 strike) private {
        uint48 epochId = epochs[strike];
        EpochInfo storage info = infos[epochId];

        if (info.closed) {
            return;
        }

        if (info.strike == 0) revert InvalidEpochStrike();

        // Mark the epoch as closed
        info.closed = true;

        emit RoundClosed(epochId, strike);
    }
}

File 2 of 33 : SafeERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";
import {IERC1363} from "../../../interfaces/IERC1363.sol";
import {Address} from "../../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC-20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    /**
     * @dev An operation with an ERC-20 token failed.
     */
    error SafeERC20FailedOperation(address token);

    /**
     * @dev Indicates a failed `decreaseAllowance` request.
     */
    error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     *
     * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
     * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
     * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
     * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        forceApprove(token, spender, oldAllowance + value);
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
     * value, non-reverting calls are assumed to be successful.
     *
     * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
     * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
     * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
     * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
        unchecked {
            uint256 currentAllowance = token.allowance(address(this), spender);
            if (currentAllowance < requestedDecrease) {
                revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
            }
            forceApprove(token, spender, currentAllowance - requestedDecrease);
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     *
     * NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function
     * only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being
     * set here.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            safeTransfer(token, to, value);
        } else if (!token.transferAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
     * has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferFromAndCallRelaxed(
        IERC1363 token,
        address from,
        address to,
        uint256 value,
        bytes memory data
    ) internal {
        if (to.code.length == 0) {
            safeTransferFrom(token, from, to, value);
        } else if (!token.transferFromAndCall(from, to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
     * Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
     * once without retrying, and relies on the returned value to be true.
     *
     * Reverts if the returned value is other than `true`.
     */
    function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            forceApprove(token, to, value);
        } else if (!token.approveAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements.
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        uint256 returnSize;
        uint256 returnValue;
        assembly ("memory-safe") {
            let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
            // bubble errors
            if iszero(success) {
                let ptr := mload(0x40)
                returndatacopy(ptr, 0, returndatasize())
                revert(ptr, returndatasize())
            }
            returnSize := returndatasize()
            returnValue := mload(0)
        }

        if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        bool success;
        uint256 returnSize;
        uint256 returnValue;
        assembly ("memory-safe") {
            success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
            returnSize := returndatasize()
            returnValue := mload(0)
        }
        return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1);
    }
}

File 3 of 33 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

File 4 of 33 : ReentrancyGuard.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/ReentrancyGuard.sol)

pragma solidity ^0.8.20;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If EIP-1153 (transient storage) is available on the chain you're deploying at,
 * consider using {ReentrancyGuardTransient} instead.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant NOT_ENTERED = 1;
    uint256 private constant ENTERED = 2;

    uint256 private _status;

    /**
     * @dev Unauthorized reentrant call.
     */
    error ReentrancyGuardReentrantCall();

    constructor() {
        _status = NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be NOT_ENTERED
        if (_status == ENTERED) {
            revert ReentrancyGuardReentrantCall();
        }

        // Any calls to nonReentrant after this point will fail
        _status = ENTERED;
    }

    function _nonReentrantAfter() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = NOT_ENTERED;
    }

    /**
     * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
     * `nonReentrant` function in the call stack.
     */
    function _reentrancyGuardEntered() internal view returns (bool) {
        return _status == ENTERED;
    }
}

File 5 of 33 : Ownable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)

pragma solidity ^0.8.20;

import {Context} from "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is set to the address provided by the deployer. This can
 * later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);

    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    constructor(address initialOwner) {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

File 6 of 33 : Pausable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Pausable.sol)

pragma solidity ^0.8.20;

import {Context} from "../utils/Context.sol";

/**
 * @dev Contract module which allows children to implement an emergency stop
 * mechanism that can be triggered by an authorized account.
 *
 * This module is used through inheritance. It will make available the
 * modifiers `whenNotPaused` and `whenPaused`, which can be applied to
 * the functions of your contract. Note that they will not be pausable by
 * simply including this module, only once the modifiers are put in place.
 */
abstract contract Pausable is Context {
    bool private _paused;

    /**
     * @dev Emitted when the pause is triggered by `account`.
     */
    event Paused(address account);

    /**
     * @dev Emitted when the pause is lifted by `account`.
     */
    event Unpaused(address account);

    /**
     * @dev The operation failed because the contract is paused.
     */
    error EnforcedPause();

    /**
     * @dev The operation failed because the contract is not paused.
     */
    error ExpectedPause();

    /**
     * @dev Initializes the contract in unpaused state.
     */
    constructor() {
        _paused = false;
    }

    /**
     * @dev Modifier to make a function callable only when the contract is not paused.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    modifier whenNotPaused() {
        _requireNotPaused();
        _;
    }

    /**
     * @dev Modifier to make a function callable only when the contract is paused.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    modifier whenPaused() {
        _requirePaused();
        _;
    }

    /**
     * @dev Returns true if the contract is paused, and false otherwise.
     */
    function paused() public view virtual returns (bool) {
        return _paused;
    }

    /**
     * @dev Throws if the contract is paused.
     */
    function _requireNotPaused() internal view virtual {
        if (paused()) {
            revert EnforcedPause();
        }
    }

    /**
     * @dev Throws if the contract is not paused.
     */
    function _requirePaused() internal view virtual {
        if (!paused()) {
            revert ExpectedPause();
        }
    }

    /**
     * @dev Triggers stopped state.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    function _pause() internal virtual whenNotPaused {
        _paused = true;
        emit Paused(_msgSender());
    }

    /**
     * @dev Returns to normal state.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    function _unpause() internal virtual whenPaused {
        _paused = false;
        emit Unpaused(_msgSender());
    }
}

File 7 of 33 : FixedPointMathLib.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Arithmetic library with operations for fixed-point numbers.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/FixedPointMathLib.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/FixedPointMathLib.sol)
library FixedPointMathLib {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       CUSTOM ERRORS                        */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The operation failed, as the output exceeds the maximum value of uint256.
    error ExpOverflow();

    /// @dev The operation failed, as the output exceeds the maximum value of uint256.
    error FactorialOverflow();

    /// @dev The operation failed, due to an overflow.
    error RPowOverflow();

    /// @dev The mantissa is too big to fit.
    error MantissaOverflow();

    /// @dev The operation failed, due to an multiplication overflow.
    error MulWadFailed();

    /// @dev The operation failed, due to an multiplication overflow.
    error SMulWadFailed();

    /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero.
    error DivWadFailed();

    /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero.
    error SDivWadFailed();

    /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero.
    error MulDivFailed();

    /// @dev The division failed, as the denominator is zero.
    error DivFailed();

    /// @dev The full precision multiply-divide operation failed, either due
    /// to the result being larger than 256 bits, or a division by a zero.
    error FullMulDivFailed();

    /// @dev The output is undefined, as the input is less-than-or-equal to zero.
    error LnWadUndefined();

    /// @dev The input outside the acceptable domain.
    error OutOfDomain();

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                         CONSTANTS                          */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The scalar of ETH and most ERC20s.
    uint256 internal constant WAD = 1e18;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*              SIMPLIFIED FIXED POINT OPERATIONS             */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Equivalent to `(x * y) / WAD` rounded down.
    function mulWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to `require(y == 0 || x <= type(uint256).max / y)`.
            if gt(x, div(not(0), y)) {
                if y {
                    mstore(0x00, 0xbac65e5b) // `MulWadFailed()`.
                    revert(0x1c, 0x04)
                }
            }
            z := div(mul(x, y), WAD)
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded down.
    function sMulWad(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, y)
            // Equivalent to `require((x == 0 || z / x == y) && !(x == -1 && y == type(int256).min))`.
            if iszero(gt(or(iszero(x), eq(sdiv(z, x), y)), lt(not(x), eq(y, shl(255, 1))))) {
                mstore(0x00, 0xedcd4dd4) // `SMulWadFailed()`.
                revert(0x1c, 0x04)
            }
            z := sdiv(z, WAD)
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded down, but without overflow checks.
    function rawMulWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := div(mul(x, y), WAD)
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded down, but without overflow checks.
    function rawSMulWad(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := sdiv(mul(x, y), WAD)
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded up.
    function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, y)
            // Equivalent to `require(y == 0 || x <= type(uint256).max / y)`.
            if iszero(eq(div(z, y), x)) {
                if y {
                    mstore(0x00, 0xbac65e5b) // `MulWadFailed()`.
                    revert(0x1c, 0x04)
                }
            }
            z := add(iszero(iszero(mod(z, WAD))), div(z, WAD))
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded up, but without overflow checks.
    function rawMulWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := add(iszero(iszero(mod(mul(x, y), WAD))), div(mul(x, y), WAD))
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded down.
    function divWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to `require(y != 0 && x <= type(uint256).max / WAD)`.
            if iszero(mul(y, lt(x, add(1, div(not(0), WAD))))) {
                mstore(0x00, 0x7c5f487d) // `DivWadFailed()`.
                revert(0x1c, 0x04)
            }
            z := div(mul(x, WAD), y)
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded down.
    function sDivWad(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, WAD)
            // Equivalent to `require(y != 0 && ((x * WAD) / WAD == x))`.
            if iszero(mul(y, eq(sdiv(z, WAD), x))) {
                mstore(0x00, 0x5c43740d) // `SDivWadFailed()`.
                revert(0x1c, 0x04)
            }
            z := sdiv(z, y)
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded down, but without overflow and divide by zero checks.
    function rawDivWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := div(mul(x, WAD), y)
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded down, but without overflow and divide by zero checks.
    function rawSDivWad(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := sdiv(mul(x, WAD), y)
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded up.
    function divWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to `require(y != 0 && x <= type(uint256).max / WAD)`.
            if iszero(mul(y, lt(x, add(1, div(not(0), WAD))))) {
                mstore(0x00, 0x7c5f487d) // `DivWadFailed()`.
                revert(0x1c, 0x04)
            }
            z := add(iszero(iszero(mod(mul(x, WAD), y))), div(mul(x, WAD), y))
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded up, but without overflow and divide by zero checks.
    function rawDivWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := add(iszero(iszero(mod(mul(x, WAD), y))), div(mul(x, WAD), y))
        }
    }

    /// @dev Equivalent to `x` to the power of `y`.
    /// because `x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)`.
    /// Note: This function is an approximation.
    function powWad(int256 x, int256 y) internal pure returns (int256) {
        // Using `ln(x)` means `x` must be greater than 0.
        return expWad((lnWad(x) * y) / int256(WAD));
    }

    /// @dev Returns `exp(x)`, denominated in `WAD`.
    /// Credit to Remco Bloemen under MIT license: https://2π.com/22/exp-ln
    /// Note: This function is an approximation. Monotonically increasing.
    function expWad(int256 x) internal pure returns (int256 r) {
        unchecked {
            // When the result is less than 0.5 we return zero.
            // This happens when `x <= (log(1e-18) * 1e18) ~ -4.15e19`.
            if (x <= -41446531673892822313) return r;

            /// @solidity memory-safe-assembly
            assembly {
                // When the result is greater than `(2**255 - 1) / 1e18` we can not represent it as
                // an int. This happens when `x >= floor(log((2**255 - 1) / 1e18) * 1e18) ≈ 135`.
                if iszero(slt(x, 135305999368893231589)) {
                    mstore(0x00, 0xa37bfec9) // `ExpOverflow()`.
                    revert(0x1c, 0x04)
                }
            }

            // `x` is now in the range `(-42, 136) * 1e18`. Convert to `(-42, 136) * 2**96`
            // for more intermediate precision and a binary basis. This base conversion
            // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
            x = (x << 78) / 5 ** 18;

            // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
            // of two such that exp(x) = exp(x') * 2**k, where k is an integer.
            // Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
            int256 k = ((x << 96) / 54916777467707473351141471128 + 2 ** 95) >> 96;
            x = x - k * 54916777467707473351141471128;

            // `k` is in the range `[-61, 195]`.

            // Evaluate using a (6, 7)-term rational approximation.
            // `p` is made monic, we'll multiply by a scale factor later.
            int256 y = x + 1346386616545796478920950773328;
            y = ((y * x) >> 96) + 57155421227552351082224309758442;
            int256 p = y + x - 94201549194550492254356042504812;
            p = ((p * y) >> 96) + 28719021644029726153956944680412240;
            p = p * x + (4385272521454847904659076985693276 << 96);

            // We leave `p` in `2**192` basis so we don't need to scale it back up for the division.
            int256 q = x - 2855989394907223263936484059900;
            q = ((q * x) >> 96) + 50020603652535783019961831881945;
            q = ((q * x) >> 96) - 533845033583426703283633433725380;
            q = ((q * x) >> 96) + 3604857256930695427073651918091429;
            q = ((q * x) >> 96) - 14423608567350463180887372962807573;
            q = ((q * x) >> 96) + 26449188498355588339934803723976023;

            /// @solidity memory-safe-assembly
            assembly {
                // Div in assembly because solidity adds a zero check despite the unchecked.
                // The q polynomial won't have zeros in the domain as all its roots are complex.
                // No scaling is necessary because p is already `2**96` too large.
                r := sdiv(p, q)
            }

            // r should be in the range `(0.09, 0.25) * 2**96`.

            // We now need to multiply r by:
            // - The scale factor `s ≈ 6.031367120`.
            // - The `2**k` factor from the range reduction.
            // - The `1e18 / 2**96` factor for base conversion.
            // We do this all at once, with an intermediate result in `2**213`
            // basis, so the final right shift is always by a positive amount.
            r = int256(
                (uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k)
            );
        }
    }

    /// @dev Returns `ln(x)`, denominated in `WAD`.
    /// Credit to Remco Bloemen under MIT license: https://2π.com/22/exp-ln
    /// Note: This function is an approximation. Monotonically increasing.
    function lnWad(int256 x) internal pure returns (int256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            // We want to convert `x` from `10**18` fixed point to `2**96` fixed point.
            // We do this by multiplying by `2**96 / 10**18`. But since
            // `ln(x * C) = ln(x) + ln(C)`, we can simply do nothing here
            // and add `ln(2**96 / 10**18)` at the end.

            // Compute `k = log2(x) - 96`, `r = 159 - k = 255 - log2(x) = 255 ^ log2(x)`.
            r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(r, shl(3, lt(0xff, shr(r, x))))
            // We place the check here for more optimal stack operations.
            if iszero(sgt(x, 0)) {
                mstore(0x00, 0x1615e638) // `LnWadUndefined()`.
                revert(0x1c, 0x04)
            }
            // forgefmt: disable-next-item
            r := xor(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)),
                0xf8f9f9faf9fdfafbf9fdfcfdfafbfcfef9fafdfafcfcfbfefafafcfbffffffff))

            // Reduce range of x to (1, 2) * 2**96
            // ln(2^k * x) = k * ln(2) + ln(x)
            x := shr(159, shl(r, x))

            // Evaluate using a (8, 8)-term rational approximation.
            // `p` is made monic, we will multiply by a scale factor later.
            // forgefmt: disable-next-item
            let p := sub( // This heavily nested expression is to avoid stack-too-deep for via-ir.
                sar(96, mul(add(43456485725739037958740375743393,
                sar(96, mul(add(24828157081833163892658089445524,
                sar(96, mul(add(3273285459638523848632254066296,
                    x), x))), x))), x)), 11111509109440967052023855526967)
            p := sub(sar(96, mul(p, x)), 45023709667254063763336534515857)
            p := sub(sar(96, mul(p, x)), 14706773417378608786704636184526)
            p := sub(mul(p, x), shl(96, 795164235651350426258249787498))
            // We leave `p` in `2**192` basis so we don't need to scale it back up for the division.

            // `q` is monic by convention.
            let q := add(5573035233440673466300451813936, x)
            q := add(71694874799317883764090561454958, sar(96, mul(x, q)))
            q := add(283447036172924575727196451306956, sar(96, mul(x, q)))
            q := add(401686690394027663651624208769553, sar(96, mul(x, q)))
            q := add(204048457590392012362485061816622, sar(96, mul(x, q)))
            q := add(31853899698501571402653359427138, sar(96, mul(x, q)))
            q := add(909429971244387300277376558375, sar(96, mul(x, q)))

            // `p / q` is in the range `(0, 0.125) * 2**96`.

            // Finalization, we need to:
            // - Multiply by the scale factor `s = 5.549…`.
            // - Add `ln(2**96 / 10**18)`.
            // - Add `k * ln(2)`.
            // - Multiply by `10**18 / 2**96 = 5**18 >> 78`.

            // The q polynomial is known not to have zeros in the domain.
            // No scaling required because p is already `2**96` too large.
            p := sdiv(p, q)
            // Multiply by the scaling factor: `s * 5**18 * 2**96`, base is now `5**18 * 2**192`.
            p := mul(1677202110996718588342820967067443963516166, p)
            // Add `ln(2) * k * 5**18 * 2**192`.
            // forgefmt: disable-next-item
            p := add(mul(16597577552685614221487285958193947469193820559219878177908093499208371, sub(159, r)), p)
            // Add `ln(2**96 / 10**18) * 5**18 * 2**192`.
            p := add(600920179829731861736702779321621459595472258049074101567377883020018308, p)
            // Base conversion: mul `2**18 / 2**192`.
            r := sar(174, p)
        }
    }

    /// @dev Returns `W_0(x)`, denominated in `WAD`.
    /// See: https://en.wikipedia.org/wiki/Lambert_W_function
    /// a.k.a. Product log function. This is an approximation of the principal branch.
    /// Note: This function is an approximation. Monotonically increasing.
    function lambertW0Wad(int256 x) internal pure returns (int256 w) {
        // forgefmt: disable-next-item
        unchecked {
            if ((w = x) <= -367879441171442322) revert OutOfDomain(); // `x` less than `-1/e`.
            (int256 wad, int256 p) = (int256(WAD), x);
            uint256 c; // Whether we need to avoid catastrophic cancellation.
            uint256 i = 4; // Number of iterations.
            if (w <= 0x1ffffffffffff) {
                if (-0x4000000000000 <= w) {
                    i = 1; // Inputs near zero only take one step to converge.
                } else if (w <= -0x3ffffffffffffff) {
                    i = 32; // Inputs near `-1/e` take very long to converge.
                }
            } else if (uint256(w >> 63) == uint256(0)) {
                /// @solidity memory-safe-assembly
                assembly {
                    // Inline log2 for more performance, since the range is small.
                    let v := shr(49, w)
                    let l := shl(3, lt(0xff, v))
                    l := add(or(l, byte(and(0x1f, shr(shr(l, v), 0x8421084210842108cc6318c6db6d54be)),
                        0x0706060506020504060203020504030106050205030304010505030400000000)), 49)
                    w := sdiv(shl(l, 7), byte(sub(l, 31), 0x0303030303030303040506080c13))
                    c := gt(l, 60)
                    i := add(2, add(gt(l, 53), c))
                }
            } else {
                int256 ll = lnWad(w = lnWad(w));
                /// @solidity memory-safe-assembly
                assembly {
                    // `w = ln(x) - ln(ln(x)) + b * ln(ln(x)) / ln(x)`.
                    w := add(sdiv(mul(ll, 1023715080943847266), w), sub(w, ll))
                    i := add(3, iszero(shr(68, x)))
                    c := iszero(shr(143, x))
                }
                if (c == uint256(0)) {
                    do { // If `x` is big, use Newton's so that intermediate values won't overflow.
                        int256 e = expWad(w);
                        /// @solidity memory-safe-assembly
                        assembly {
                            let t := mul(w, div(e, wad))
                            w := sub(w, sdiv(sub(t, x), div(add(e, t), wad)))
                        }
                        if (p <= w) break;
                        p = w;
                    } while (--i != uint256(0));
                    /// @solidity memory-safe-assembly
                    assembly {
                        w := sub(w, sgt(w, 2))
                    }
                    return w;
                }
            }
            do { // Otherwise, use Halley's for faster convergence.
                int256 e = expWad(w);
                /// @solidity memory-safe-assembly
                assembly {
                    let t := add(w, wad)
                    let s := sub(mul(w, e), mul(x, wad))
                    w := sub(w, sdiv(mul(s, wad), sub(mul(e, t), sdiv(mul(add(t, wad), s), add(t, t)))))
                }
                if (p <= w) break;
                p = w;
            } while (--i != c);
            /// @solidity memory-safe-assembly
            assembly {
                w := sub(w, sgt(w, 2))
            }
            // For certain ranges of `x`, we'll use the quadratic-rate recursive formula of
            // R. Iacono and J.P. Boyd for the last iteration, to avoid catastrophic cancellation.
            if (c == uint256(0)) return w;
            int256 t = w | 1;
            /// @solidity memory-safe-assembly
            assembly {
                x := sdiv(mul(x, wad), t)
            }
            x = (t * (wad + lnWad(x)));
            /// @solidity memory-safe-assembly
            assembly {
                w := sdiv(x, add(wad, t))
            }
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                  GENERAL NUMBER UTILITIES                  */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns `a * b == x * y`, with full precision.
    function fullMulEq(uint256 a, uint256 b, uint256 x, uint256 y)
        internal
        pure
        returns (bool result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            result := and(eq(mul(a, b), mul(x, y)), eq(mulmod(x, y, not(0)), mulmod(a, b, not(0))))
        }
    }

    /// @dev Calculates `floor(x * y / d)` with full precision.
    /// Throws if result overflows a uint256 or when `d` is zero.
    /// Credit to Remco Bloemen under MIT license: https://2π.com/21/muldiv
    function fullMulDiv(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // 512-bit multiply `[p1 p0] = x * y`.
            // Compute the product mod `2**256` and mod `2**256 - 1`
            // then use the Chinese Remainder Theorem to reconstruct
            // the 512 bit result. The result is stored in two 256
            // variables such that `product = p1 * 2**256 + p0`.

            // Temporarily use `z` as `p0` to save gas.
            z := mul(x, y) // Lower 256 bits of `x * y`.
            for {} 1 {} {
                // If overflows.
                if iszero(mul(or(iszero(x), eq(div(z, x), y)), d)) {
                    let mm := mulmod(x, y, not(0))
                    let p1 := sub(mm, add(z, lt(mm, z))) // Upper 256 bits of `x * y`.

                    /*------------------- 512 by 256 division --------------------*/

                    // Make division exact by subtracting the remainder from `[p1 p0]`.
                    let r := mulmod(x, y, d) // Compute remainder using mulmod.
                    let t := and(d, sub(0, d)) // The least significant bit of `d`. `t >= 1`.
                    // Make sure `z` is less than `2**256`. Also prevents `d == 0`.
                    // Placing the check here seems to give more optimal stack operations.
                    if iszero(gt(d, p1)) {
                        mstore(0x00, 0xae47f702) // `FullMulDivFailed()`.
                        revert(0x1c, 0x04)
                    }
                    d := div(d, t) // Divide `d` by `t`, which is a power of two.
                    // Invert `d mod 2**256`
                    // Now that `d` is an odd number, it has an inverse
                    // modulo `2**256` such that `d * inv = 1 mod 2**256`.
                    // Compute the inverse by starting with a seed that is correct
                    // correct for four bits. That is, `d * inv = 1 mod 2**4`.
                    let inv := xor(2, mul(3, d))
                    // Now use Newton-Raphson iteration to improve the precision.
                    // Thanks to Hensel's lifting lemma, this also works in modular
                    // arithmetic, doubling the correct bits in each step.
                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**8
                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**16
                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**32
                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**64
                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**128
                    z :=
                        mul(
                            // Divide [p1 p0] by the factors of two.
                            // Shift in bits from `p1` into `p0`. For this we need
                            // to flip `t` such that it is `2**256 / t`.
                            or(mul(sub(p1, gt(r, z)), add(div(sub(0, t), t), 1)), div(sub(z, r), t)),
                            mul(sub(2, mul(d, inv)), inv) // inverse mod 2**256
                        )
                    break
                }
                z := div(z, d)
                break
            }
        }
    }

    /// @dev Calculates `floor(x * y / d)` with full precision.
    /// Behavior is undefined if `d` is zero or the final result cannot fit in 256 bits.
    /// Performs the full 512 bit calculation regardless.
    function fullMulDivUnchecked(uint256 x, uint256 y, uint256 d)
        internal
        pure
        returns (uint256 z)
    {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, y)
            let mm := mulmod(x, y, not(0))
            let p1 := sub(mm, add(z, lt(mm, z)))
            let t := and(d, sub(0, d))
            let r := mulmod(x, y, d)
            d := div(d, t)
            let inv := xor(2, mul(3, d))
            inv := mul(inv, sub(2, mul(d, inv)))
            inv := mul(inv, sub(2, mul(d, inv)))
            inv := mul(inv, sub(2, mul(d, inv)))
            inv := mul(inv, sub(2, mul(d, inv)))
            inv := mul(inv, sub(2, mul(d, inv)))
            z :=
                mul(
                    or(mul(sub(p1, gt(r, z)), add(div(sub(0, t), t), 1)), div(sub(z, r), t)),
                    mul(sub(2, mul(d, inv)), inv)
                )
        }
    }

    /// @dev Calculates `floor(x * y / d)` with full precision, rounded up.
    /// Throws if result overflows a uint256 or when `d` is zero.
    /// Credit to Uniswap-v3-core under MIT license:
    /// https://github.com/Uniswap/v3-core/blob/main/contracts/libraries/FullMath.sol
    function fullMulDivUp(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        z = fullMulDiv(x, y, d);
        /// @solidity memory-safe-assembly
        assembly {
            if mulmod(x, y, d) {
                z := add(z, 1)
                if iszero(z) {
                    mstore(0x00, 0xae47f702) // `FullMulDivFailed()`.
                    revert(0x1c, 0x04)
                }
            }
        }
    }

    /// @dev Calculates `floor(x * y / 2 ** n)` with full precision.
    /// Throws if result overflows a uint256.
    /// Credit to Philogy under MIT license:
    /// https://github.com/SorellaLabs/angstrom/blob/main/contracts/src/libraries/X128MathLib.sol
    function fullMulDivN(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Temporarily use `z` as `p0` to save gas.
            z := mul(x, y) // Lower 256 bits of `x * y`. We'll call this `z`.
            for {} 1 {} {
                if iszero(or(iszero(x), eq(div(z, x), y))) {
                    let k := and(n, 0xff) // `n`, cleaned.
                    let mm := mulmod(x, y, not(0))
                    let p1 := sub(mm, add(z, lt(mm, z))) // Upper 256 bits of `x * y`.
                    //         |      p1     |      z     |
                    // Before: | p1_0 ¦ p1_1 | z_0  ¦ z_1 |
                    // Final:  |   0  ¦ p1_0 | p1_1 ¦ z_0 |
                    // Check that final `z` doesn't overflow by checking that p1_0 = 0.
                    if iszero(shr(k, p1)) {
                        z := add(shl(sub(256, k), p1), shr(k, z))
                        break
                    }
                    mstore(0x00, 0xae47f702) // `FullMulDivFailed()`.
                    revert(0x1c, 0x04)
                }
                z := shr(and(n, 0xff), z)
                break
            }
        }
    }

    /// @dev Returns `floor(x * y / d)`.
    /// Reverts if `x * y` overflows, or `d` is zero.
    function mulDiv(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, y)
            // Equivalent to `require(d != 0 && (y == 0 || x <= type(uint256).max / y))`.
            if iszero(mul(or(iszero(x), eq(div(z, x), y)), d)) {
                mstore(0x00, 0xad251c27) // `MulDivFailed()`.
                revert(0x1c, 0x04)
            }
            z := div(z, d)
        }
    }

    /// @dev Returns `ceil(x * y / d)`.
    /// Reverts if `x * y` overflows, or `d` is zero.
    function mulDivUp(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, y)
            // Equivalent to `require(d != 0 && (y == 0 || x <= type(uint256).max / y))`.
            if iszero(mul(or(iszero(x), eq(div(z, x), y)), d)) {
                mstore(0x00, 0xad251c27) // `MulDivFailed()`.
                revert(0x1c, 0x04)
            }
            z := add(iszero(iszero(mod(z, d))), div(z, d))
        }
    }

    /// @dev Returns `x`, the modular multiplicative inverse of `a`, such that `(a * x) % n == 1`.
    function invMod(uint256 a, uint256 n) internal pure returns (uint256 x) {
        /// @solidity memory-safe-assembly
        assembly {
            let g := n
            let r := mod(a, n)
            for { let y := 1 } 1 {} {
                let q := div(g, r)
                let t := g
                g := r
                r := sub(t, mul(r, q))
                let u := x
                x := y
                y := sub(u, mul(y, q))
                if iszero(r) { break }
            }
            x := mul(eq(g, 1), add(x, mul(slt(x, 0), n)))
        }
    }

    /// @dev Returns `ceil(x / d)`.
    /// Reverts if `d` is zero.
    function divUp(uint256 x, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            if iszero(d) {
                mstore(0x00, 0x65244e4e) // `DivFailed()`.
                revert(0x1c, 0x04)
            }
            z := add(iszero(iszero(mod(x, d))), div(x, d))
        }
    }

    /// @dev Returns `max(0, x - y)`.
    function zeroFloorSub(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(gt(x, y), sub(x, y))
        }
    }

    /// @dev Returns `condition ? x : y`, without branching.
    function ternary(bool condition, uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), iszero(condition)))
        }
    }

    /// @dev Returns `condition ? x : y`, without branching.
    function ternary(bool condition, bytes32 x, bytes32 y) internal pure returns (bytes32 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), iszero(condition)))
        }
    }

    /// @dev Returns `condition ? x : y`, without branching.
    function ternary(bool condition, address x, address y) internal pure returns (address z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), iszero(condition)))
        }
    }

    /// @dev Exponentiate `x` to `y` by squaring, denominated in base `b`.
    /// Reverts if the computation overflows.
    function rpow(uint256 x, uint256 y, uint256 b) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(b, iszero(y)) // `0 ** 0 = 1`. Otherwise, `0 ** n = 0`.
            if x {
                z := xor(b, mul(xor(b, x), and(y, 1))) // `z = isEven(y) ? scale : x`
                let half := shr(1, b) // Divide `b` by 2.
                // Divide `y` by 2 every iteration.
                for { y := shr(1, y) } y { y := shr(1, y) } {
                    let xx := mul(x, x) // Store x squared.
                    let xxRound := add(xx, half) // Round to the nearest number.
                    // Revert if `xx + half` overflowed, or if `x ** 2` overflows.
                    if or(lt(xxRound, xx), shr(128, x)) {
                        mstore(0x00, 0x49f7642b) // `RPowOverflow()`.
                        revert(0x1c, 0x04)
                    }
                    x := div(xxRound, b) // Set `x` to scaled `xxRound`.
                    // If `y` is odd:
                    if and(y, 1) {
                        let zx := mul(z, x) // Compute `z * x`.
                        let zxRound := add(zx, half) // Round to the nearest number.
                        // If `z * x` overflowed or `zx + half` overflowed:
                        if or(xor(div(zx, x), z), lt(zxRound, zx)) {
                            // Revert if `x` is non-zero.
                            if x {
                                mstore(0x00, 0x49f7642b) // `RPowOverflow()`.
                                revert(0x1c, 0x04)
                            }
                        }
                        z := div(zxRound, b) // Return properly scaled `zxRound`.
                    }
                }
            }
        }
    }

    /// @dev Returns the square root of `x`, rounded down.
    function sqrt(uint256 x) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // `floor(sqrt(2**15)) = 181`. `sqrt(2**15) - 181 = 2.84`.
            z := 181 // The "correct" value is 1, but this saves a multiplication later.

            // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
            // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.

            // Let `y = x / 2**r`. We check `y >= 2**(k + 8)`
            // but shift right by `k` bits to ensure that if `x >= 256`, then `y >= 256`.
            let r := shl(7, lt(0xffffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffffff, shr(r, x))))
            z := shl(shr(1, r), z)

            // Goal was to get `z*z*y` within a small factor of `x`. More iterations could
            // get y in a tighter range. Currently, we will have y in `[256, 256*(2**16))`.
            // We ensured `y >= 256` so that the relative difference between `y` and `y+1` is small.
            // That's not possible if `x < 256` but we can just verify those cases exhaustively.

            // Now, `z*z*y <= x < z*z*(y+1)`, and `y <= 2**(16+8)`, and either `y >= 256`, or `x < 256`.
            // Correctness can be checked exhaustively for `x < 256`, so we assume `y >= 256`.
            // Then `z*sqrt(y)` is within `sqrt(257)/sqrt(256)` of `sqrt(x)`, or about 20bps.

            // For `s` in the range `[1/256, 256]`, the estimate `f(s) = (181/1024) * (s+1)`
            // is in the range `(1/2.84 * sqrt(s), 2.84 * sqrt(s))`,
            // with largest error when `s = 1` and when `s = 256` or `1/256`.

            // Since `y` is in `[256, 256*(2**16))`, let `a = y/65536`, so that `a` is in `[1/256, 256)`.
            // Then we can estimate `sqrt(y)` using
            // `sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2**18`.

            // There is no overflow risk here since `y < 2**136` after the first branch above.
            z := shr(18, mul(z, add(shr(r, x), 65536))) // A `mul()` is saved from starting `z` at 181.

            // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))

            // If `x+1` is a perfect square, the Babylonian method cycles between
            // `floor(sqrt(x))` and `ceil(sqrt(x))`. This statement ensures we return floor.
            // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
            z := sub(z, lt(div(x, z), z))
        }
    }

    /// @dev Returns the cube root of `x`, rounded down.
    /// Credit to bout3fiddy and pcaversaccio under AGPLv3 license:
    /// https://github.com/pcaversaccio/snekmate/blob/main/src/utils/Math.vy
    /// Formally verified by xuwinnie:
    /// https://github.com/vectorized/solady/blob/main/audits/xuwinnie-solady-cbrt-proof.pdf
    function cbrt(uint256 x) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            let r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(r, shl(3, lt(0xff, shr(r, x))))
            // Makeshift lookup table to nudge the approximate log2 result.
            z := div(shl(div(r, 3), shl(lt(0xf, shr(r, x)), 0xf)), xor(7, mod(r, 3)))
            // Newton-Raphson's.
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            // Round down.
            z := sub(z, lt(div(x, mul(z, z)), z))
        }
    }

    /// @dev Returns the square root of `x`, denominated in `WAD`, rounded down.
    function sqrtWad(uint256 x) internal pure returns (uint256 z) {
        unchecked {
            if (x <= type(uint256).max / 10 ** 18) return sqrt(x * 10 ** 18);
            z = (1 + sqrt(x)) * 10 ** 9;
            z = (fullMulDivUnchecked(x, 10 ** 18, z) + z) >> 1;
        }
        /// @solidity memory-safe-assembly
        assembly {
            z := sub(z, gt(999999999999999999, sub(mulmod(z, z, x), 1))) // Round down.
        }
    }

    /// @dev Returns the cube root of `x`, denominated in `WAD`, rounded down.
    /// Formally verified by xuwinnie:
    /// https://github.com/vectorized/solady/blob/main/audits/xuwinnie-solady-cbrt-proof.pdf
    function cbrtWad(uint256 x) internal pure returns (uint256 z) {
        unchecked {
            if (x <= type(uint256).max / 10 ** 36) return cbrt(x * 10 ** 36);
            z = (1 + cbrt(x)) * 10 ** 12;
            z = (fullMulDivUnchecked(x, 10 ** 36, z * z) + z + z) / 3;
        }
        /// @solidity memory-safe-assembly
        assembly {
            let p := x
            for {} 1 {} {
                if iszero(shr(229, p)) {
                    if iszero(shr(199, p)) {
                        p := mul(p, 100000000000000000) // 10 ** 17.
                        break
                    }
                    p := mul(p, 100000000) // 10 ** 8.
                    break
                }
                if iszero(shr(249, p)) { p := mul(p, 100) }
                break
            }
            let t := mulmod(mul(z, z), z, p)
            z := sub(z, gt(lt(t, shr(1, p)), iszero(t))) // Round down.
        }
    }

    /// @dev Returns the factorial of `x`.
    function factorial(uint256 x) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := 1
            if iszero(lt(x, 58)) {
                mstore(0x00, 0xaba0f2a2) // `FactorialOverflow()`.
                revert(0x1c, 0x04)
            }
            for {} x { x := sub(x, 1) } { z := mul(z, x) }
        }
    }

    /// @dev Returns the log2 of `x`.
    /// Equivalent to computing the index of the most significant bit (MSB) of `x`.
    /// Returns 0 if `x` is zero.
    function log2(uint256 x) internal pure returns (uint256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(r, shl(3, lt(0xff, shr(r, x))))
            // forgefmt: disable-next-item
            r := or(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)),
                0x0706060506020504060203020504030106050205030304010505030400000000))
        }
    }

    /// @dev Returns the log2 of `x`, rounded up.
    /// Returns 0 if `x` is zero.
    function log2Up(uint256 x) internal pure returns (uint256 r) {
        r = log2(x);
        /// @solidity memory-safe-assembly
        assembly {
            r := add(r, lt(shl(r, 1), x))
        }
    }

    /// @dev Returns the log10 of `x`.
    /// Returns 0 if `x` is zero.
    function log10(uint256 x) internal pure returns (uint256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            if iszero(lt(x, 100000000000000000000000000000000000000)) {
                x := div(x, 100000000000000000000000000000000000000)
                r := 38
            }
            if iszero(lt(x, 100000000000000000000)) {
                x := div(x, 100000000000000000000)
                r := add(r, 20)
            }
            if iszero(lt(x, 10000000000)) {
                x := div(x, 10000000000)
                r := add(r, 10)
            }
            if iszero(lt(x, 100000)) {
                x := div(x, 100000)
                r := add(r, 5)
            }
            r := add(r, add(gt(x, 9), add(gt(x, 99), add(gt(x, 999), gt(x, 9999)))))
        }
    }

    /// @dev Returns the log10 of `x`, rounded up.
    /// Returns 0 if `x` is zero.
    function log10Up(uint256 x) internal pure returns (uint256 r) {
        r = log10(x);
        /// @solidity memory-safe-assembly
        assembly {
            r := add(r, lt(exp(10, r), x))
        }
    }

    /// @dev Returns the log256 of `x`.
    /// Returns 0 if `x` is zero.
    function log256(uint256 x) internal pure returns (uint256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(shr(3, r), lt(0xff, shr(r, x)))
        }
    }

    /// @dev Returns the log256 of `x`, rounded up.
    /// Returns 0 if `x` is zero.
    function log256Up(uint256 x) internal pure returns (uint256 r) {
        r = log256(x);
        /// @solidity memory-safe-assembly
        assembly {
            r := add(r, lt(shl(shl(3, r), 1), x))
        }
    }

    /// @dev Returns the scientific notation format `mantissa * 10 ** exponent` of `x`.
    /// Useful for compressing prices (e.g. using 25 bit mantissa and 7 bit exponent).
    function sci(uint256 x) internal pure returns (uint256 mantissa, uint256 exponent) {
        /// @solidity memory-safe-assembly
        assembly {
            mantissa := x
            if mantissa {
                if iszero(mod(mantissa, 1000000000000000000000000000000000)) {
                    mantissa := div(mantissa, 1000000000000000000000000000000000)
                    exponent := 33
                }
                if iszero(mod(mantissa, 10000000000000000000)) {
                    mantissa := div(mantissa, 10000000000000000000)
                    exponent := add(exponent, 19)
                }
                if iszero(mod(mantissa, 1000000000000)) {
                    mantissa := div(mantissa, 1000000000000)
                    exponent := add(exponent, 12)
                }
                if iszero(mod(mantissa, 1000000)) {
                    mantissa := div(mantissa, 1000000)
                    exponent := add(exponent, 6)
                }
                if iszero(mod(mantissa, 10000)) {
                    mantissa := div(mantissa, 10000)
                    exponent := add(exponent, 4)
                }
                if iszero(mod(mantissa, 100)) {
                    mantissa := div(mantissa, 100)
                    exponent := add(exponent, 2)
                }
                if iszero(mod(mantissa, 10)) {
                    mantissa := div(mantissa, 10)
                    exponent := add(exponent, 1)
                }
            }
        }
    }

    /// @dev Convenience function for packing `x` into a smaller number using `sci`.
    /// The `mantissa` will be in bits [7..255] (the upper 249 bits).
    /// The `exponent` will be in bits [0..6] (the lower 7 bits).
    /// Use `SafeCastLib` to safely ensure that the `packed` number is small
    /// enough to fit in the desired unsigned integer type:
    /// ```
    ///     uint32 packed = SafeCastLib.toUint32(FixedPointMathLib.packSci(777 ether));
    /// ```
    function packSci(uint256 x) internal pure returns (uint256 packed) {
        (x, packed) = sci(x); // Reuse for `mantissa` and `exponent`.
        /// @solidity memory-safe-assembly
        assembly {
            if shr(249, x) {
                mstore(0x00, 0xce30380c) // `MantissaOverflow()`.
                revert(0x1c, 0x04)
            }
            packed := or(shl(7, x), packed)
        }
    }

    /// @dev Convenience function for unpacking a packed number from `packSci`.
    function unpackSci(uint256 packed) internal pure returns (uint256 unpacked) {
        unchecked {
            unpacked = (packed >> 7) * 10 ** (packed & 0x7f);
        }
    }

    /// @dev Returns the average of `x` and `y`. Rounds towards zero.
    function avg(uint256 x, uint256 y) internal pure returns (uint256 z) {
        unchecked {
            z = (x & y) + ((x ^ y) >> 1);
        }
    }

    /// @dev Returns the average of `x` and `y`. Rounds towards negative infinity.
    function avg(int256 x, int256 y) internal pure returns (int256 z) {
        unchecked {
            z = (x >> 1) + (y >> 1) + (x & y & 1);
        }
    }

    /// @dev Returns the absolute value of `x`.
    function abs(int256 x) internal pure returns (uint256 z) {
        unchecked {
            z = (uint256(x) + uint256(x >> 255)) ^ uint256(x >> 255);
        }
    }

    /// @dev Returns the absolute distance between `x` and `y`.
    function dist(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := add(xor(sub(0, gt(x, y)), sub(y, x)), gt(x, y))
        }
    }

    /// @dev Returns the absolute distance between `x` and `y`.
    function dist(int256 x, int256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := add(xor(sub(0, sgt(x, y)), sub(y, x)), sgt(x, y))
        }
    }

    /// @dev Returns the minimum of `x` and `y`.
    function min(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), lt(y, x)))
        }
    }

    /// @dev Returns the minimum of `x` and `y`.
    function min(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), slt(y, x)))
        }
    }

    /// @dev Returns the maximum of `x` and `y`.
    function max(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), gt(y, x)))
        }
    }

    /// @dev Returns the maximum of `x` and `y`.
    function max(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), sgt(y, x)))
        }
    }

    /// @dev Returns `x`, bounded to `minValue` and `maxValue`.
    function clamp(uint256 x, uint256 minValue, uint256 maxValue)
        internal
        pure
        returns (uint256 z)
    {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, minValue), gt(minValue, x)))
            z := xor(z, mul(xor(z, maxValue), lt(maxValue, z)))
        }
    }

    /// @dev Returns `x`, bounded to `minValue` and `maxValue`.
    function clamp(int256 x, int256 minValue, int256 maxValue) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, minValue), sgt(minValue, x)))
            z := xor(z, mul(xor(z, maxValue), slt(maxValue, z)))
        }
    }

    /// @dev Returns greatest common divisor of `x` and `y`.
    function gcd(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            for { z := x } y {} {
                let t := y
                y := mod(z, y)
                z := t
            }
        }
    }

    /// @dev Returns `a + (b - a) * (t - begin) / (end - begin)`,
    /// with `t` clamped between `begin` and `end` (inclusive).
    /// Agnostic to the order of (`a`, `b`) and (`end`, `begin`).
    /// If `begins == end`, returns `t <= begin ? a : b`.
    function lerp(uint256 a, uint256 b, uint256 t, uint256 begin, uint256 end)
        internal
        pure
        returns (uint256)
    {
        if (begin > end) (t, begin, end) = (~t, ~begin, ~end);
        if (t <= begin) return a;
        if (t >= end) return b;
        unchecked {
            if (b >= a) return a + fullMulDiv(b - a, t - begin, end - begin);
            return a - fullMulDiv(a - b, t - begin, end - begin);
        }
    }

    /// @dev Returns `a + (b - a) * (t - begin) / (end - begin)`.
    /// with `t` clamped between `begin` and `end` (inclusive).
    /// Agnostic to the order of (`a`, `b`) and (`end`, `begin`).
    /// If `begins == end`, returns `t <= begin ? a : b`.
    function lerp(int256 a, int256 b, int256 t, int256 begin, int256 end)
        internal
        pure
        returns (int256)
    {
        if (begin > end) (t, begin, end) = (~t, ~begin, ~end);
        if (t <= begin) return a;
        if (t >= end) return b;
        // forgefmt: disable-next-item
        unchecked {
            if (b >= a) return int256(uint256(a) + fullMulDiv(uint256(b - a),
                uint256(t - begin), uint256(end - begin)));
            return int256(uint256(a) - fullMulDiv(uint256(a - b),
                uint256(t - begin), uint256(end - begin)));
        }
    }

    /// @dev Returns if `x` is an even number. Some people may need this.
    function isEven(uint256 x) internal pure returns (bool) {
        return x & uint256(1) == uint256(0);
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                   RAW NUMBER OPERATIONS                    */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns `x + y`, without checking for overflow.
    function rawAdd(uint256 x, uint256 y) internal pure returns (uint256 z) {
        unchecked {
            z = x + y;
        }
    }

    /// @dev Returns `x + y`, without checking for overflow.
    function rawAdd(int256 x, int256 y) internal pure returns (int256 z) {
        unchecked {
            z = x + y;
        }
    }

    /// @dev Returns `x - y`, without checking for underflow.
    function rawSub(uint256 x, uint256 y) internal pure returns (uint256 z) {
        unchecked {
            z = x - y;
        }
    }

    /// @dev Returns `x - y`, without checking for underflow.
    function rawSub(int256 x, int256 y) internal pure returns (int256 z) {
        unchecked {
            z = x - y;
        }
    }

    /// @dev Returns `x * y`, without checking for overflow.
    function rawMul(uint256 x, uint256 y) internal pure returns (uint256 z) {
        unchecked {
            z = x * y;
        }
    }

    /// @dev Returns `x * y`, without checking for overflow.
    function rawMul(int256 x, int256 y) internal pure returns (int256 z) {
        unchecked {
            z = x * y;
        }
    }

    /// @dev Returns `x / y`, returning 0 if `y` is zero.
    function rawDiv(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := div(x, y)
        }
    }

    /// @dev Returns `x / y`, returning 0 if `y` is zero.
    function rawSDiv(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := sdiv(x, y)
        }
    }

    /// @dev Returns `x % y`, returning 0 if `y` is zero.
    function rawMod(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mod(x, y)
        }
    }

    /// @dev Returns `x % y`, returning 0 if `y` is zero.
    function rawSMod(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := smod(x, y)
        }
    }

    /// @dev Returns `(x + y) % d`, return 0 if `d` if zero.
    function rawAddMod(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := addmod(x, y, d)
        }
    }

    /// @dev Returns `(x * y) % d`, return 0 if `d` if zero.
    function rawMulMod(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mulmod(x, y, d)
        }
    }
}

File 8 of 33 : IOracleChainsight.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;

interface IOracleChainsight {
    function readAsInt256ByKey(address sender, bytes32 key) external view returns (int256);

    function readAsInt256WithTimestamp(address sender, bytes32 key) external view returns (int256, uint64);

    function readAsUint64WithTimestamp(address sender, bytes32 key) external view returns (uint64, uint64);
}

File 9 of 33 : henlocked.sol
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.13;

import "@openzeppelin/contracts/utils/Strings.sol";
import {ERC1155} from "@openzeppelin/contracts/token/ERC1155/ERC1155.sol";
import {Ownable} from "@openzeppelin/contracts/access/Ownable.sol";

contract henlocked is ERC1155, Ownable {
    mapping(uint256 => uint256) public totalSupply;
    mapping(address => bool) public authorized;

    // Events
    event Authorize(address indexed user);

    event Mint(address indexed user, uint256 indexed strike, uint256 amount);

    event Burn(address indexed user, uint256 indexed strike, uint256 amount);

    constructor(string memory uri_) ERC1155(uri_) Ownable(msg.sender) {}

    // Assumes 100b token supply and price in 1e8 (Chainlink format)
    function name(uint256 strike) public view virtual returns (string memory) {
        // strike is in 1e8 format from Chainlink
        // For 100B supply:
        // $1.00 (100000000) = 100B mcap
        // $0.42 (42000000) = 42B mcap
        // $0.042 (4200000) = 4.2B mcap
        // $0.0042 (420000) = 420M mcap

        // Convert to millions by dividing by 1000
        // 100000000 / 1000 = 100000 (100b)
        // 42000000 / 1000 = 42000 (42b)
        // 4200000 / 1000 = 4200 (4.2b)
        // 420000 / 1000 = 420 (420m)
        uint256 mcapInMillions = strike / 1000; // Convert to millions

        if (mcapInMillions >= 100000) {
            // 100B+
            return string(abi.encodePacked("henlocked@", Strings.toString(mcapInMillions / 100000), "00b"));
        } else if (mcapInMillions >= 1000) {
            // 1B to 99.9B
            uint256 billions = mcapInMillions / 1000;
            uint256 decimal = (mcapInMillions % 1000) / 100;
            if (decimal > 0) {
                return string(
                    abi.encodePacked("henlocked@", Strings.toString(billions), ".", Strings.toString(decimal), "b")
                );
            }
            return string(abi.encodePacked("henlocked@", Strings.toString(billions), "b"));
        } else if (mcapInMillions > 0) {
            // 1M to 999M
            if (mcapInMillions >= 100) {
                // No decimals needed
                return string(abi.encodePacked("henlocked@", Strings.toString(mcapInMillions), "m"));
            } else {
                // Add one decimal place for < 100M
                uint256 whole = mcapInMillions;
                uint256 decimal = (strike % 1000) / 100;
                if (decimal > 0) {
                    return string(
                        abi.encodePacked("henlocked@", Strings.toString(whole), ".", Strings.toString(decimal), "m")
                    );
                }
                return string(abi.encodePacked("henlocked@", Strings.toString(whole), "m"));
            }
        } else {
            // Under 1M
            uint256 mcapInThousands = strike;
            return string(abi.encodePacked("henlocked@", Strings.toString(mcapInThousands), "k"));
        }
    }

    function symbol(uint256 strike) public view virtual returns (string memory) {
        return name(strike);
    }

    // authorize enables another contract to transfer tokens between accounts.
    // This is for use by deployed ERC20 tokens. See src/single/HodlToken.sol.
    function authorize(address operator) public onlyOwner {
        authorized[operator] = true;

        emit Authorize(operator);
    }

    // This is for use by deployed ERC20 tokens
    function safeTransferFromHenlocked(address from, address to, uint256 strike, uint256 amount) external {
        require(authorized[msg.sender], "Not authorized");

        uint256[] memory strikes = new uint256[](1);
        uint256[] memory amounts = new uint256[](1);
        strikes[0] = strike;
        amounts[0] = amount;

        _update(from, to, strikes, amounts);
    }

    function mint(address user, uint256 strike, uint256 amount) public onlyOwner {
        totalSupply[strike] += amount;
        _mint(user, strike, amount, "");

        emit Mint(user, strike, amount);
    }

    function burn(address user, uint256 strike, uint256 amount) public onlyOwner {
        totalSupply[strike] -= amount;
        _burn(user, strike, amount);

        emit Burn(user, strike, amount);
    }
}

File 10 of 33 : henlockedERC20.sol
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.13;

import "@openzeppelin/contracts/utils/Strings.sol";
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";

import {henlocked} from "../multi/henlocked.sol";

// HodlToken is an ERC20 wrapper on top of the ERC1155 HodlMultiToken. It
// represents a token at a particular strike, and can be composed inside defi
// applications that expect ERC20 tokens. For example, it can be used to create
// a swap liquidity pool in protocols that operate on ERC20 tokens.
contract henlockedToken is IERC20 {
    mapping(address => mapping(address => uint256)) private _allowances;

    henlocked public immutable hodlMulti;
    uint256 public immutable strike;

    string private _name;
    string private _symbol;

    constructor(address hodlMulti_, uint64 strike_) {
        require(hodlMulti_ != address(0));

        hodlMulti = henlocked(hodlMulti_);
        strike = strike_;

        _name = hodlMulti.name(strike);
        _symbol = hodlMulti.symbol(strike);
    }

    function name() public view virtual returns (string memory) {
        return _name;
    }

    function symbol() public view virtual returns (string memory) {
        return _symbol;
    }

    function decimals() public view virtual returns (uint8) {
        return 18;
    }

    function totalSupply() public view returns (uint256) {
        return hodlMulti.totalSupply(strike);
    }

    function balanceOf(address user) public view returns (uint256) {
        return hodlMulti.balanceOf(user, strike);
    }

    function transfer(address to, uint256 amount) public returns (bool) {
        hodlMulti.safeTransferFromHenlocked(msg.sender, to, strike, amount);
        emit Transfer(msg.sender, to, amount);
        return true;
    }

    function allowance(address owner, address spender) public view returns (uint256) {
        return _allowances[owner][spender];
    }

    function approve(address spender, uint256 amount) public returns (bool) {
        require(spender != address(0), "approve zero address");
        _allowances[msg.sender][spender] = amount;

        emit Approval(msg.sender, spender, amount);

        return true;
    }

    function transferFrom(address from, address to, uint256 amount) public returns (bool) {
        require(_allowances[from][msg.sender] >= amount, "not authorized");

        if (_allowances[from][msg.sender] != type(uint256).max) {
            _allowances[from][msg.sender] -= amount;
        }

        hodlMulti.safeTransferFromHenlocked(from, to, strike, amount);
        emit Transfer(from, to, amount);
        return true;
    }
}

File 11 of 33 : IERC1363.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC1363.sol)

pragma solidity ^0.8.20;

import {IERC20} from "./IERC20.sol";
import {IERC165} from "./IERC165.sol";

/**
 * @title IERC1363
 * @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363].
 *
 * Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract
 * after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction.
 */
interface IERC1363 is IERC20, IERC165 {
    /*
     * Note: the ERC-165 identifier for this interface is 0xb0202a11.
     * 0xb0202a11 ===
     *   bytes4(keccak256('transferAndCall(address,uint256)')) ^
     *   bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256,bytes)'))
     */

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value) external returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @param data Additional data with no specified format, sent in call to `spender`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool);
}

File 12 of 33 : Address.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Address.sol)

pragma solidity ^0.8.20;

import {Errors} from "./Errors.sol";

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev There's no code at `target` (it is not a contract).
     */
    error AddressEmptyCode(address target);

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        if (address(this).balance < amount) {
            revert Errors.InsufficientBalance(address(this).balance, amount);
        }

        (bool success, ) = recipient.call{value: amount}("");
        if (!success) {
            revert Errors.FailedCall();
        }
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason or custom error, it is bubbled
     * up by this function (like regular Solidity function calls). However, if
     * the call reverted with no returned reason, this function reverts with a
     * {Errors.FailedCall} error.
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        if (address(this).balance < value) {
            revert Errors.InsufficientBalance(address(this).balance, value);
        }
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
     * was not a contract or bubbling up the revert reason (falling back to {Errors.FailedCall}) in case
     * of an unsuccessful call.
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata
    ) internal view returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            // only check if target is a contract if the call was successful and the return data is empty
            // otherwise we already know that it was a contract
            if (returndata.length == 0 && target.code.length == 0) {
                revert AddressEmptyCode(target);
            }
            return returndata;
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
     * revert reason or with a default {Errors.FailedCall} error.
     */
    function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            return returndata;
        }
    }

    /**
     * @dev Reverts with returndata if present. Otherwise reverts with {Errors.FailedCall}.
     */
    function _revert(bytes memory returndata) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            assembly ("memory-safe") {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert Errors.FailedCall();
        }
    }
}

File 13 of 33 : Context.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

File 14 of 33 : Strings.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Strings.sol)

pragma solidity ^0.8.20;

import {Math} from "./math/Math.sol";
import {SignedMath} from "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant HEX_DIGITS = "0123456789abcdef";
    uint8 private constant ADDRESS_LENGTH = 20;

    /**
     * @dev The `value` string doesn't fit in the specified `length`.
     */
    error StringsInsufficientHexLength(uint256 value, uint256 length);

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            assembly ("memory-safe") {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                assembly ("memory-safe") {
                    mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toStringSigned(int256 value) internal pure returns (string memory) {
        return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        uint256 localValue = value;
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = HEX_DIGITS[localValue & 0xf];
            localValue >>= 4;
        }
        if (localValue != 0) {
            revert StringsInsufficientHexLength(value, length);
        }
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
     * representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal
     * representation, according to EIP-55.
     */
    function toChecksumHexString(address addr) internal pure returns (string memory) {
        bytes memory buffer = bytes(toHexString(addr));

        // hash the hex part of buffer (skip length + 2 bytes, length 40)
        uint256 hashValue;
        assembly ("memory-safe") {
            hashValue := shr(96, keccak256(add(buffer, 0x22), 40))
        }

        for (uint256 i = 41; i > 1; --i) {
            // possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f)
            if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) {
                // case shift by xoring with 0x20
                buffer[i] ^= 0x20;
            }
            hashValue >>= 4;
        }
        return string(buffer);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
    }
}

File 15 of 33 : ERC1155.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC1155/ERC1155.sol)

pragma solidity ^0.8.20;

import {IERC1155} from "./IERC1155.sol";
import {IERC1155MetadataURI} from "./extensions/IERC1155MetadataURI.sol";
import {ERC1155Utils} from "./utils/ERC1155Utils.sol";
import {Context} from "../../utils/Context.sol";
import {IERC165, ERC165} from "../../utils/introspection/ERC165.sol";
import {Arrays} from "../../utils/Arrays.sol";
import {IERC1155Errors} from "../../interfaces/draft-IERC6093.sol";

/**
 * @dev Implementation of the basic standard multi-token.
 * See https://eips.ethereum.org/EIPS/eip-1155
 * Originally based on code by Enjin: https://github.com/enjin/erc-1155
 */
abstract contract ERC1155 is Context, ERC165, IERC1155, IERC1155MetadataURI, IERC1155Errors {
    using Arrays for uint256[];
    using Arrays for address[];

    mapping(uint256 id => mapping(address account => uint256)) private _balances;

    mapping(address account => mapping(address operator => bool)) private _operatorApprovals;

    // Used as the URI for all token types by relying on ID substitution, e.g. https://token-cdn-domain/{id}.json
    string private _uri;

    /**
     * @dev See {_setURI}.
     */
    constructor(string memory uri_) {
        _setURI(uri_);
    }

    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) {
        return
            interfaceId == type(IERC1155).interfaceId ||
            interfaceId == type(IERC1155MetadataURI).interfaceId ||
            super.supportsInterface(interfaceId);
    }

    /**
     * @dev See {IERC1155MetadataURI-uri}.
     *
     * This implementation returns the same URI for *all* token types. It relies
     * on the token type ID substitution mechanism
     * https://eips.ethereum.org/EIPS/eip-1155#metadata[defined in the ERC].
     *
     * Clients calling this function must replace the `\{id\}` substring with the
     * actual token type ID.
     */
    function uri(uint256 /* id */) public view virtual returns (string memory) {
        return _uri;
    }

    /**
     * @dev See {IERC1155-balanceOf}.
     */
    function balanceOf(address account, uint256 id) public view virtual returns (uint256) {
        return _balances[id][account];
    }

    /**
     * @dev See {IERC1155-balanceOfBatch}.
     *
     * Requirements:
     *
     * - `accounts` and `ids` must have the same length.
     */
    function balanceOfBatch(
        address[] memory accounts,
        uint256[] memory ids
    ) public view virtual returns (uint256[] memory) {
        if (accounts.length != ids.length) {
            revert ERC1155InvalidArrayLength(ids.length, accounts.length);
        }

        uint256[] memory batchBalances = new uint256[](accounts.length);

        for (uint256 i = 0; i < accounts.length; ++i) {
            batchBalances[i] = balanceOf(accounts.unsafeMemoryAccess(i), ids.unsafeMemoryAccess(i));
        }

        return batchBalances;
    }

    /**
     * @dev See {IERC1155-setApprovalForAll}.
     */
    function setApprovalForAll(address operator, bool approved) public virtual {
        _setApprovalForAll(_msgSender(), operator, approved);
    }

    /**
     * @dev See {IERC1155-isApprovedForAll}.
     */
    function isApprovedForAll(address account, address operator) public view virtual returns (bool) {
        return _operatorApprovals[account][operator];
    }

    /**
     * @dev See {IERC1155-safeTransferFrom}.
     */
    function safeTransferFrom(address from, address to, uint256 id, uint256 value, bytes memory data) public virtual {
        address sender = _msgSender();
        if (from != sender && !isApprovedForAll(from, sender)) {
            revert ERC1155MissingApprovalForAll(sender, from);
        }
        _safeTransferFrom(from, to, id, value, data);
    }

    /**
     * @dev See {IERC1155-safeBatchTransferFrom}.
     */
    function safeBatchTransferFrom(
        address from,
        address to,
        uint256[] memory ids,
        uint256[] memory values,
        bytes memory data
    ) public virtual {
        address sender = _msgSender();
        if (from != sender && !isApprovedForAll(from, sender)) {
            revert ERC1155MissingApprovalForAll(sender, from);
        }
        _safeBatchTransferFrom(from, to, ids, values, data);
    }

    /**
     * @dev Transfers a `value` amount of tokens of type `id` from `from` to `to`. Will mint (or burn) if `from`
     * (or `to`) is the zero address.
     *
     * Emits a {TransferSingle} event if the arrays contain one element, and {TransferBatch} otherwise.
     *
     * Requirements:
     *
     * - If `to` refers to a smart contract, it must implement either {IERC1155Receiver-onERC1155Received}
     *   or {IERC1155Receiver-onERC1155BatchReceived} and return the acceptance magic value.
     * - `ids` and `values` must have the same length.
     *
     * NOTE: The ERC-1155 acceptance check is not performed in this function. See {_updateWithAcceptanceCheck} instead.
     */
    function _update(address from, address to, uint256[] memory ids, uint256[] memory values) internal virtual {
        if (ids.length != values.length) {
            revert ERC1155InvalidArrayLength(ids.length, values.length);
        }

        address operator = _msgSender();

        for (uint256 i = 0; i < ids.length; ++i) {
            uint256 id = ids.unsafeMemoryAccess(i);
            uint256 value = values.unsafeMemoryAccess(i);

            if (from != address(0)) {
                uint256 fromBalance = _balances[id][from];
                if (fromBalance < value) {
                    revert ERC1155InsufficientBalance(from, fromBalance, value, id);
                }
                unchecked {
                    // Overflow not possible: value <= fromBalance
                    _balances[id][from] = fromBalance - value;
                }
            }

            if (to != address(0)) {
                _balances[id][to] += value;
            }
        }

        if (ids.length == 1) {
            uint256 id = ids.unsafeMemoryAccess(0);
            uint256 value = values.unsafeMemoryAccess(0);
            emit TransferSingle(operator, from, to, id, value);
        } else {
            emit TransferBatch(operator, from, to, ids, values);
        }
    }

    /**
     * @dev Version of {_update} that performs the token acceptance check by calling
     * {IERC1155Receiver-onERC1155Received} or {IERC1155Receiver-onERC1155BatchReceived} on the receiver address if it
     * contains code (eg. is a smart contract at the moment of execution).
     *
     * IMPORTANT: Overriding this function is discouraged because it poses a reentrancy risk from the receiver. So any
     * update to the contract state after this function would break the check-effect-interaction pattern. Consider
     * overriding {_update} instead.
     */
    function _updateWithAcceptanceCheck(
        address from,
        address to,
        uint256[] memory ids,
        uint256[] memory values,
        bytes memory data
    ) internal virtual {
        _update(from, to, ids, values);
        if (to != address(0)) {
            address operator = _msgSender();
            if (ids.length == 1) {
                uint256 id = ids.unsafeMemoryAccess(0);
                uint256 value = values.unsafeMemoryAccess(0);
                ERC1155Utils.checkOnERC1155Received(operator, from, to, id, value, data);
            } else {
                ERC1155Utils.checkOnERC1155BatchReceived(operator, from, to, ids, values, data);
            }
        }
    }

    /**
     * @dev Transfers a `value` tokens of token type `id` from `from` to `to`.
     *
     * Emits a {TransferSingle} event.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - `from` must have a balance of tokens of type `id` of at least `value` amount.
     * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
     * acceptance magic value.
     */
    function _safeTransferFrom(address from, address to, uint256 id, uint256 value, bytes memory data) internal {
        if (to == address(0)) {
            revert ERC1155InvalidReceiver(address(0));
        }
        if (from == address(0)) {
            revert ERC1155InvalidSender(address(0));
        }
        (uint256[] memory ids, uint256[] memory values) = _asSingletonArrays(id, value);
        _updateWithAcceptanceCheck(from, to, ids, values, data);
    }

    /**
     * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {_safeTransferFrom}.
     *
     * Emits a {TransferBatch} event.
     *
     * Requirements:
     *
     * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the
     * acceptance magic value.
     * - `ids` and `values` must have the same length.
     */
    function _safeBatchTransferFrom(
        address from,
        address to,
        uint256[] memory ids,
        uint256[] memory values,
        bytes memory data
    ) internal {
        if (to == address(0)) {
            revert ERC1155InvalidReceiver(address(0));
        }
        if (from == address(0)) {
            revert ERC1155InvalidSender(address(0));
        }
        _updateWithAcceptanceCheck(from, to, ids, values, data);
    }

    /**
     * @dev Sets a new URI for all token types, by relying on the token type ID
     * substitution mechanism
     * https://eips.ethereum.org/EIPS/eip-1155#metadata[defined in the ERC].
     *
     * By this mechanism, any occurrence of the `\{id\}` substring in either the
     * URI or any of the values in the JSON file at said URI will be replaced by
     * clients with the token type ID.
     *
     * For example, the `https://token-cdn-domain/\{id\}.json` URI would be
     * interpreted by clients as
     * `https://token-cdn-domain/000000000000000000000000000000000000000000000000000000000004cce0.json`
     * for token type ID 0x4cce0.
     *
     * See {uri}.
     *
     * Because these URIs cannot be meaningfully represented by the {URI} event,
     * this function emits no events.
     */
    function _setURI(string memory newuri) internal virtual {
        _uri = newuri;
    }

    /**
     * @dev Creates a `value` amount of tokens of type `id`, and assigns them to `to`.
     *
     * Emits a {TransferSingle} event.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
     * acceptance magic value.
     */
    function _mint(address to, uint256 id, uint256 value, bytes memory data) internal {
        if (to == address(0)) {
            revert ERC1155InvalidReceiver(address(0));
        }
        (uint256[] memory ids, uint256[] memory values) = _asSingletonArrays(id, value);
        _updateWithAcceptanceCheck(address(0), to, ids, values, data);
    }

    /**
     * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {_mint}.
     *
     * Emits a {TransferBatch} event.
     *
     * Requirements:
     *
     * - `ids` and `values` must have the same length.
     * - `to` cannot be the zero address.
     * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the
     * acceptance magic value.
     */
    function _mintBatch(address to, uint256[] memory ids, uint256[] memory values, bytes memory data) internal {
        if (to == address(0)) {
            revert ERC1155InvalidReceiver(address(0));
        }
        _updateWithAcceptanceCheck(address(0), to, ids, values, data);
    }

    /**
     * @dev Destroys a `value` amount of tokens of type `id` from `from`
     *
     * Emits a {TransferSingle} event.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `from` must have at least `value` amount of tokens of type `id`.
     */
    function _burn(address from, uint256 id, uint256 value) internal {
        if (from == address(0)) {
            revert ERC1155InvalidSender(address(0));
        }
        (uint256[] memory ids, uint256[] memory values) = _asSingletonArrays(id, value);
        _updateWithAcceptanceCheck(from, address(0), ids, values, "");
    }

    /**
     * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {_burn}.
     *
     * Emits a {TransferBatch} event.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `from` must have at least `value` amount of tokens of type `id`.
     * - `ids` and `values` must have the same length.
     */
    function _burnBatch(address from, uint256[] memory ids, uint256[] memory values) internal {
        if (from == address(0)) {
            revert ERC1155InvalidSender(address(0));
        }
        _updateWithAcceptanceCheck(from, address(0), ids, values, "");
    }

    /**
     * @dev Approve `operator` to operate on all of `owner` tokens
     *
     * Emits an {ApprovalForAll} event.
     *
     * Requirements:
     *
     * - `operator` cannot be the zero address.
     */
    function _setApprovalForAll(address owner, address operator, bool approved) internal virtual {
        if (operator == address(0)) {
            revert ERC1155InvalidOperator(address(0));
        }
        _operatorApprovals[owner][operator] = approved;
        emit ApprovalForAll(owner, operator, approved);
    }

    /**
     * @dev Creates an array in memory with only one value for each of the elements provided.
     */
    function _asSingletonArrays(
        uint256 element1,
        uint256 element2
    ) private pure returns (uint256[] memory array1, uint256[] memory array2) {
        assembly ("memory-safe") {
            // Load the free memory pointer
            array1 := mload(0x40)
            // Set array length to 1
            mstore(array1, 1)
            // Store the single element at the next word after the length (where content starts)
            mstore(add(array1, 0x20), element1)

            // Repeat for next array locating it right after the first array
            array2 := add(array1, 0x40)
            mstore(array2, 1)
            mstore(add(array2, 0x20), element2)

            // Update the free memory pointer by pointing after the second array
            mstore(0x40, add(array2, 0x40))
        }
    }
}

File 16 of 33 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../token/ERC20/IERC20.sol";

File 17 of 33 : IERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol)

pragma solidity ^0.8.20;

import {IERC165} from "../utils/introspection/IERC165.sol";

File 18 of 33 : Errors.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Errors.sol)

pragma solidity ^0.8.20;

/**
 * @dev Collection of common custom errors used in multiple contracts
 *
 * IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library.
 * It is recommended to avoid relying on the error API for critical functionality.
 *
 * _Available since v5.1._
 */
library Errors {
    /**
     * @dev The ETH balance of the account is not enough to perform the operation.
     */
    error InsufficientBalance(uint256 balance, uint256 needed);

    /**
     * @dev A call to an address target failed. The target may have reverted.
     */
    error FailedCall();

    /**
     * @dev The deployment failed.
     */
    error FailedDeployment();

    /**
     * @dev A necessary precompile is missing.
     */
    error MissingPrecompile(address);
}

File 19 of 33 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * SafeCast.toUint(condition));
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
            // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2²⁵⁶ + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
            if (denominator <= prod1) {
                Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
            // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
            // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
     *
     * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
     * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
     * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
     *
     * NOTE: this function does NOT check that `p` is a prime greater than `2`.
     */
    function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
        unchecked {
            return Math.modExp(a, p - 2, p);
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        assembly ("memory-safe") {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
            // This is going to be our x_0 (and ε_0)
            xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              ≥ 0
            // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // ε_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | ε_n² / (2 * x_n) |
            //         = ε_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // ε_1 = ε_0² / | (2 * x_0) |
            //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
            //     ≤ 2**(e-3) / 3
            //     ≤ 2**(e-3-log2(3))
            //     ≤ 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
            // ε_{n+1} = ε_n² / | (2 * x_n) |
            //         ≤ (2**(e-k))² / (2 * 2**(e-1))
            //         ≤ 2**(2*e-2*k) / 2**e
            //         ≤ 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72

            // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
            // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 exp;
        unchecked {
            exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
            value >>= exp;
            result += exp;

            exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
            value >>= exp;
            result += exp;

            exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
            value >>= exp;
            result += exp;

            exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
            value >>= exp;
            result += exp;

            exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
            value >>= exp;
            result += exp;

            exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
            value >>= exp;
            result += exp;

            exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
            value >>= exp;
            result += exp;

            result += SafeCast.toUint(value > 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 isGt;
        unchecked {
            isGt = SafeCast.toUint(value > (1 << 128) - 1);
            value >>= isGt * 128;
            result += isGt * 16;

            isGt = SafeCast.toUint(value > (1 << 64) - 1);
            value >>= isGt * 64;
            result += isGt * 8;

            isGt = SafeCast.toUint(value > (1 << 32) - 1);
            value >>= isGt * 32;
            result += isGt * 4;

            isGt = SafeCast.toUint(value > (1 << 16) - 1);
            value >>= isGt * 16;
            result += isGt * 2;

            result += SafeCast.toUint(value > (1 << 8) - 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

File 20 of 33 : SignedMath.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.20;

import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * int256(SafeCast.toUint(condition)));
        }
    }

    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.
            // Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,
            // taking advantage of the most significant (or "sign" bit) in two's complement representation.
            // This opcode adds new most significant bits set to the value of the previous most significant bit. As a result,
            // the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative).
            int256 mask = n >> 255;

            // A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.
            return uint256((n + mask) ^ mask);
        }
    }
}

File 21 of 33 : IERC1155.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC1155/IERC1155.sol)

pragma solidity ^0.8.20;

import {IERC165} from "../../utils/introspection/IERC165.sol";

/**
 * @dev Required interface of an ERC-1155 compliant contract, as defined in the
 * https://eips.ethereum.org/EIPS/eip-1155[ERC].
 */
interface IERC1155 is IERC165 {
    /**
     * @dev Emitted when `value` amount of tokens of type `id` are transferred from `from` to `to` by `operator`.
     */
    event TransferSingle(address indexed operator, address indexed from, address indexed to, uint256 id, uint256 value);

    /**
     * @dev Equivalent to multiple {TransferSingle} events, where `operator`, `from` and `to` are the same for all
     * transfers.
     */
    event TransferBatch(
        address indexed operator,
        address indexed from,
        address indexed to,
        uint256[] ids,
        uint256[] values
    );

    /**
     * @dev Emitted when `account` grants or revokes permission to `operator` to transfer their tokens, according to
     * `approved`.
     */
    event ApprovalForAll(address indexed account, address indexed operator, bool approved);

    /**
     * @dev Emitted when the URI for token type `id` changes to `value`, if it is a non-programmatic URI.
     *
     * If an {URI} event was emitted for `id`, the standard
     * https://eips.ethereum.org/EIPS/eip-1155#metadata-extensions[guarantees] that `value` will equal the value
     * returned by {IERC1155MetadataURI-uri}.
     */
    event URI(string value, uint256 indexed id);

    /**
     * @dev Returns the value of tokens of token type `id` owned by `account`.
     */
    function balanceOf(address account, uint256 id) external view returns (uint256);

    /**
     * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {balanceOf}.
     *
     * Requirements:
     *
     * - `accounts` and `ids` must have the same length.
     */
    function balanceOfBatch(
        address[] calldata accounts,
        uint256[] calldata ids
    ) external view returns (uint256[] memory);

    /**
     * @dev Grants or revokes permission to `operator` to transfer the caller's tokens, according to `approved`,
     *
     * Emits an {ApprovalForAll} event.
     *
     * Requirements:
     *
     * - `operator` cannot be the zero address.
     */
    function setApprovalForAll(address operator, bool approved) external;

    /**
     * @dev Returns true if `operator` is approved to transfer ``account``'s tokens.
     *
     * See {setApprovalForAll}.
     */
    function isApprovedForAll(address account, address operator) external view returns (bool);

    /**
     * @dev Transfers a `value` amount of tokens of type `id` from `from` to `to`.
     *
     * WARNING: This function can potentially allow a reentrancy attack when transferring tokens
     * to an untrusted contract, when invoking {onERC1155Received} on the receiver.
     * Ensure to follow the checks-effects-interactions pattern and consider employing
     * reentrancy guards when interacting with untrusted contracts.
     *
     * Emits a {TransferSingle} event.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - If the caller is not `from`, it must have been approved to spend ``from``'s tokens via {setApprovalForAll}.
     * - `from` must have a balance of tokens of type `id` of at least `value` amount.
     * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
     * acceptance magic value.
     */
    function safeTransferFrom(address from, address to, uint256 id, uint256 value, bytes calldata data) external;

    /**
     * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {safeTransferFrom}.
     *
     * WARNING: This function can potentially allow a reentrancy attack when transferring tokens
     * to an untrusted contract, when invoking {onERC1155BatchReceived} on the receiver.
     * Ensure to follow the checks-effects-interactions pattern and consider employing
     * reentrancy guards when interacting with untrusted contracts.
     *
     * Emits either a {TransferSingle} or a {TransferBatch} event, depending on the length of the array arguments.
     *
     * Requirements:
     *
     * - `ids` and `values` must have the same length.
     * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the
     * acceptance magic value.
     */
    function safeBatchTransferFrom(
        address from,
        address to,
        uint256[] calldata ids,
        uint256[] calldata values,
        bytes calldata data
    ) external;
}

File 22 of 33 : IERC1155MetadataURI.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC1155/extensions/IERC1155MetadataURI.sol)

pragma solidity ^0.8.20;

import {IERC1155} from "../IERC1155.sol";

/**
 * @dev Interface of the optional ERC1155MetadataExtension interface, as defined
 * in the https://eips.ethereum.org/EIPS/eip-1155#metadata-extensions[ERC].
 */
interface IERC1155MetadataURI is IERC1155 {
    /**
     * @dev Returns the URI for token type `id`.
     *
     * If the `\{id\}` substring is present in the URI, it must be replaced by
     * clients with the actual token type ID.
     */
    function uri(uint256 id) external view returns (string memory);
}

File 23 of 33 : ERC1155Utils.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC1155/utils/ERC1155Utils.sol)

pragma solidity ^0.8.20;

import {IERC1155Receiver} from "../IERC1155Receiver.sol";
import {IERC1155Errors} from "../../../interfaces/draft-IERC6093.sol";

/**
 * @dev Library that provide common ERC-1155 utility functions.
 *
 * See https://eips.ethereum.org/EIPS/eip-1155[ERC-1155].
 *
 * _Available since v5.1._
 */
library ERC1155Utils {
    /**
     * @dev Performs an acceptance check for the provided `operator` by calling {IERC1155-onERC1155Received}
     * on the `to` address. The `operator` is generally the address that initiated the token transfer (i.e. `msg.sender`).
     *
     * The acceptance call is not executed and treated as a no-op if the target address doesn't contain code (i.e. an EOA).
     * Otherwise, the recipient must implement {IERC1155Receiver-onERC1155Received} and return the acceptance magic value to accept
     * the transfer.
     */
    function checkOnERC1155Received(
        address operator,
        address from,
        address to,
        uint256 id,
        uint256 value,
        bytes memory data
    ) internal {
        if (to.code.length > 0) {
            try IERC1155Receiver(to).onERC1155Received(operator, from, id, value, data) returns (bytes4 response) {
                if (response != IERC1155Receiver.onERC1155Received.selector) {
                    // Tokens rejected
                    revert IERC1155Errors.ERC1155InvalidReceiver(to);
                }
            } catch (bytes memory reason) {
                if (reason.length == 0) {
                    // non-IERC1155Receiver implementer
                    revert IERC1155Errors.ERC1155InvalidReceiver(to);
                } else {
                    assembly ("memory-safe") {
                        revert(add(32, reason), mload(reason))
                    }
                }
            }
        }
    }

    /**
     * @dev Performs a batch acceptance check for the provided `operator` by calling {IERC1155-onERC1155BatchReceived}
     * on the `to` address. The `operator` is generally the address that initiated the token transfer (i.e. `msg.sender`).
     *
     * The acceptance call is not executed and treated as a no-op if the target address doesn't contain code (i.e. an EOA).
     * Otherwise, the recipient must implement {IERC1155Receiver-onERC1155Received} and return the acceptance magic value to accept
     * the transfer.
     */
    function checkOnERC1155BatchReceived(
        address operator,
        address from,
        address to,
        uint256[] memory ids,
        uint256[] memory values,
        bytes memory data
    ) internal {
        if (to.code.length > 0) {
            try IERC1155Receiver(to).onERC1155BatchReceived(operator, from, ids, values, data) returns (
                bytes4 response
            ) {
                if (response != IERC1155Receiver.onERC1155BatchReceived.selector) {
                    // Tokens rejected
                    revert IERC1155Errors.ERC1155InvalidReceiver(to);
                }
            } catch (bytes memory reason) {
                if (reason.length == 0) {
                    // non-IERC1155Receiver implementer
                    revert IERC1155Errors.ERC1155InvalidReceiver(to);
                } else {
                    assembly ("memory-safe") {
                        revert(add(32, reason), mload(reason))
                    }
                }
            }
        }
    }
}

File 24 of 33 : ERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/ERC165.sol)

pragma solidity ^0.8.20;

import {IERC165} from "./IERC165.sol";

/**
 * @dev Implementation of the {IERC165} interface.
 *
 * Contracts that want to implement ERC-165 should inherit from this contract and override {supportsInterface} to check
 * for the additional interface id that will be supported. For example:
 *
 * ```solidity
 * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
 *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
 * }
 * ```
 */
abstract contract ERC165 is IERC165 {
    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
        return interfaceId == type(IERC165).interfaceId;
    }
}

File 25 of 33 : Arrays.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Arrays.sol)
// This file was procedurally generated from scripts/generate/templates/Arrays.js.

pragma solidity ^0.8.20;

import {Comparators} from "./Comparators.sol";
import {SlotDerivation} from "./SlotDerivation.sol";
import {StorageSlot} from "./StorageSlot.sol";
import {Math} from "./math/Math.sol";

/**
 * @dev Collection of functions related to array types.
 */
library Arrays {
    using SlotDerivation for bytes32;
    using StorageSlot for bytes32;

    /**
     * @dev Sort an array of uint256 (in memory) following the provided comparator function.
     *
     * This function does the sorting "in place", meaning that it overrides the input. The object is returned for
     * convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array.
     *
     * NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the
     * array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful
     * when executing this as part of a transaction. If the array being sorted is too large, the sort operation may
     * consume more gas than is available in a block, leading to potential DoS.
     *
     * IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way.
     */
    function sort(
        uint256[] memory array,
        function(uint256, uint256) pure returns (bool) comp
    ) internal pure returns (uint256[] memory) {
        _quickSort(_begin(array), _end(array), comp);
        return array;
    }

    /**
     * @dev Variant of {sort} that sorts an array of uint256 in increasing order.
     */
    function sort(uint256[] memory array) internal pure returns (uint256[] memory) {
        sort(array, Comparators.lt);
        return array;
    }

    /**
     * @dev Sort an array of address (in memory) following the provided comparator function.
     *
     * This function does the sorting "in place", meaning that it overrides the input. The object is returned for
     * convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array.
     *
     * NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the
     * array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful
     * when executing this as part of a transaction. If the array being sorted is too large, the sort operation may
     * consume more gas than is available in a block, leading to potential DoS.
     *
     * IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way.
     */
    function sort(
        address[] memory array,
        function(address, address) pure returns (bool) comp
    ) internal pure returns (address[] memory) {
        sort(_castToUint256Array(array), _castToUint256Comp(comp));
        return array;
    }

    /**
     * @dev Variant of {sort} that sorts an array of address in increasing order.
     */
    function sort(address[] memory array) internal pure returns (address[] memory) {
        sort(_castToUint256Array(array), Comparators.lt);
        return array;
    }

    /**
     * @dev Sort an array of bytes32 (in memory) following the provided comparator function.
     *
     * This function does the sorting "in place", meaning that it overrides the input. The object is returned for
     * convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array.
     *
     * NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the
     * array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful
     * when executing this as part of a transaction. If the array being sorted is too large, the sort operation may
     * consume more gas than is available in a block, leading to potential DoS.
     *
     * IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way.
     */
    function sort(
        bytes32[] memory array,
        function(bytes32, bytes32) pure returns (bool) comp
    ) internal pure returns (bytes32[] memory) {
        sort(_castToUint256Array(array), _castToUint256Comp(comp));
        return array;
    }

    /**
     * @dev Variant of {sort} that sorts an array of bytes32 in increasing order.
     */
    function sort(bytes32[] memory array) internal pure returns (bytes32[] memory) {
        sort(_castToUint256Array(array), Comparators.lt);
        return array;
    }

    /**
     * @dev Performs a quick sort of a segment of memory. The segment sorted starts at `begin` (inclusive), and stops
     * at end (exclusive). Sorting follows the `comp` comparator.
     *
     * Invariant: `begin <= end`. This is the case when initially called by {sort} and is preserved in subcalls.
     *
     * IMPORTANT: Memory locations between `begin` and `end` are not validated/zeroed. This function should
     * be used only if the limits are within a memory array.
     */
    function _quickSort(uint256 begin, uint256 end, function(uint256, uint256) pure returns (bool) comp) private pure {
        unchecked {
            if (end - begin < 0x40) return;

            // Use first element as pivot
            uint256 pivot = _mload(begin);
            // Position where the pivot should be at the end of the loop
            uint256 pos = begin;

            for (uint256 it = begin + 0x20; it < end; it += 0x20) {
                if (comp(_mload(it), pivot)) {
                    // If the value stored at the iterator's position comes before the pivot, we increment the
                    // position of the pivot and move the value there.
                    pos += 0x20;
                    _swap(pos, it);
                }
            }

            _swap(begin, pos); // Swap pivot into place
            _quickSort(begin, pos, comp); // Sort the left side of the pivot
            _quickSort(pos + 0x20, end, comp); // Sort the right side of the pivot
        }
    }

    /**
     * @dev Pointer to the memory location of the first element of `array`.
     */
    function _begin(uint256[] memory array) private pure returns (uint256 ptr) {
        assembly ("memory-safe") {
            ptr := add(array, 0x20)
        }
    }

    /**
     * @dev Pointer to the memory location of the first memory word (32bytes) after `array`. This is the memory word
     * that comes just after the last element of the array.
     */
    function _end(uint256[] memory array) private pure returns (uint256 ptr) {
        unchecked {
            return _begin(array) + array.length * 0x20;
        }
    }

    /**
     * @dev Load memory word (as a uint256) at location `ptr`.
     */
    function _mload(uint256 ptr) private pure returns (uint256 value) {
        assembly {
            value := mload(ptr)
        }
    }

    /**
     * @dev Swaps the elements memory location `ptr1` and `ptr2`.
     */
    function _swap(uint256 ptr1, uint256 ptr2) private pure {
        assembly {
            let value1 := mload(ptr1)
            let value2 := mload(ptr2)
            mstore(ptr1, value2)
            mstore(ptr2, value1)
        }
    }

    /// @dev Helper: low level cast address memory array to uint256 memory array
    function _castToUint256Array(address[] memory input) private pure returns (uint256[] memory output) {
        assembly {
            output := input
        }
    }

    /// @dev Helper: low level cast bytes32 memory array to uint256 memory array
    function _castToUint256Array(bytes32[] memory input) private pure returns (uint256[] memory output) {
        assembly {
            output := input
        }
    }

    /// @dev Helper: low level cast address comp function to uint256 comp function
    function _castToUint256Comp(
        function(address, address) pure returns (bool) input
    ) private pure returns (function(uint256, uint256) pure returns (bool) output) {
        assembly {
            output := input
        }
    }

    /// @dev Helper: low level cast bytes32 comp function to uint256 comp function
    function _castToUint256Comp(
        function(bytes32, bytes32) pure returns (bool) input
    ) private pure returns (function(uint256, uint256) pure returns (bool) output) {
        assembly {
            output := input
        }
    }

    /**
     * @dev Searches a sorted `array` and returns the first index that contains
     * a value greater or equal to `element`. If no such index exists (i.e. all
     * values in the array are strictly less than `element`), the array length is
     * returned. Time complexity O(log n).
     *
     * NOTE: The `array` is expected to be sorted in ascending order, and to
     * contain no repeated elements.
     *
     * IMPORTANT: Deprecated. This implementation behaves as {lowerBound} but lacks
     * support for repeated elements in the array. The {lowerBound} function should
     * be used instead.
     */
    function findUpperBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
        uint256 low = 0;
        uint256 high = array.length;

        if (high == 0) {
            return 0;
        }

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds towards zero (it does integer division with truncation).
            if (unsafeAccess(array, mid).value > element) {
                high = mid;
            } else {
                low = mid + 1;
            }
        }

        // At this point `low` is the exclusive upper bound. We will return the inclusive upper bound.
        if (low > 0 && unsafeAccess(array, low - 1).value == element) {
            return low - 1;
        } else {
            return low;
        }
    }

    /**
     * @dev Searches an `array` sorted in ascending order and returns the first
     * index that contains a value greater or equal than `element`. If no such index
     * exists (i.e. all values in the array are strictly less than `element`), the array
     * length is returned. Time complexity O(log n).
     *
     * See C++'s https://en.cppreference.com/w/cpp/algorithm/lower_bound[lower_bound].
     */
    function lowerBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
        uint256 low = 0;
        uint256 high = array.length;

        if (high == 0) {
            return 0;
        }

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds towards zero (it does integer division with truncation).
            if (unsafeAccess(array, mid).value < element) {
                // this cannot overflow because mid < high
                unchecked {
                    low = mid + 1;
                }
            } else {
                high = mid;
            }
        }

        return low;
    }

    /**
     * @dev Searches an `array` sorted in ascending order and returns the first
     * index that contains a value strictly greater than `element`. If no such index
     * exists (i.e. all values in the array are strictly less than `element`), the array
     * length is returned. Time complexity O(log n).
     *
     * See C++'s https://en.cppreference.com/w/cpp/algorithm/upper_bound[upper_bound].
     */
    function upperBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
        uint256 low = 0;
        uint256 high = array.length;

        if (high == 0) {
            return 0;
        }

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds towards zero (it does integer division with truncation).
            if (unsafeAccess(array, mid).value > element) {
                high = mid;
            } else {
                // this cannot overflow because mid < high
                unchecked {
                    low = mid + 1;
                }
            }
        }

        return low;
    }

    /**
     * @dev Same as {lowerBound}, but with an array in memory.
     */
    function lowerBoundMemory(uint256[] memory array, uint256 element) internal pure returns (uint256) {
        uint256 low = 0;
        uint256 high = array.length;

        if (high == 0) {
            return 0;
        }

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds towards zero (it does integer division with truncation).
            if (unsafeMemoryAccess(array, mid) < element) {
                // this cannot overflow because mid < high
                unchecked {
                    low = mid + 1;
                }
            } else {
                high = mid;
            }
        }

        return low;
    }

    /**
     * @dev Same as {upperBound}, but with an array in memory.
     */
    function upperBoundMemory(uint256[] memory array, uint256 element) internal pure returns (uint256) {
        uint256 low = 0;
        uint256 high = array.length;

        if (high == 0) {
            return 0;
        }

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds towards zero (it does integer division with truncation).
            if (unsafeMemoryAccess(array, mid) > element) {
                high = mid;
            } else {
                // this cannot overflow because mid < high
                unchecked {
                    low = mid + 1;
                }
            }
        }

        return low;
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeAccess(address[] storage arr, uint256 pos) internal pure returns (StorageSlot.AddressSlot storage) {
        bytes32 slot;
        assembly ("memory-safe") {
            slot := arr.slot
        }
        return slot.deriveArray().offset(pos).getAddressSlot();
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeAccess(bytes32[] storage arr, uint256 pos) internal pure returns (StorageSlot.Bytes32Slot storage) {
        bytes32 slot;
        assembly ("memory-safe") {
            slot := arr.slot
        }
        return slot.deriveArray().offset(pos).getBytes32Slot();
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeAccess(uint256[] storage arr, uint256 pos) internal pure returns (StorageSlot.Uint256Slot storage) {
        bytes32 slot;
        assembly ("memory-safe") {
            slot := arr.slot
        }
        return slot.deriveArray().offset(pos).getUint256Slot();
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeMemoryAccess(address[] memory arr, uint256 pos) internal pure returns (address res) {
        assembly {
            res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
        }
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeMemoryAccess(bytes32[] memory arr, uint256 pos) internal pure returns (bytes32 res) {
        assembly {
            res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
        }
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeMemoryAccess(uint256[] memory arr, uint256 pos) internal pure returns (uint256 res) {
        assembly {
            res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
        }
    }

    /**
     * @dev Helper to set the length of an dynamic array. Directly writing to `.length` is forbidden.
     *
     * WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
     */
    function unsafeSetLength(address[] storage array, uint256 len) internal {
        assembly ("memory-safe") {
            sstore(array.slot, len)
        }
    }

    /**
     * @dev Helper to set the length of an dynamic array. Directly writing to `.length` is forbidden.
     *
     * WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
     */
    function unsafeSetLength(bytes32[] storage array, uint256 len) internal {
        assembly ("memory-safe") {
            sstore(array.slot, len)
        }
    }

    /**
     * @dev Helper to set the length of an dynamic array. Directly writing to `.length` is forbidden.
     *
     * WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
     */
    function unsafeSetLength(uint256[] storage array, uint256 len) internal {
        assembly ("memory-safe") {
            sstore(array.slot, len)
        }
    }
}

File 26 of 33 : draft-IERC6093.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;

/**
 * @dev Standard ERC-20 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens.
 */
interface IERC20Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC20InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC20InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     * @param allowance Amount of tokens a `spender` is allowed to operate with.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC20InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC20InvalidSpender(address spender);
}

/**
 * @dev Standard ERC-721 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens.
 */
interface IERC721Errors {
    /**
     * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20.
     * Used in balance queries.
     * @param owner Address of the current owner of a token.
     */
    error ERC721InvalidOwner(address owner);

    /**
     * @dev Indicates a `tokenId` whose `owner` is the zero address.
     * @param tokenId Identifier number of a token.
     */
    error ERC721NonexistentToken(uint256 tokenId);

    /**
     * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param tokenId Identifier number of a token.
     * @param owner Address of the current owner of a token.
     */
    error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC721InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC721InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param tokenId Identifier number of a token.
     */
    error ERC721InsufficientApproval(address operator, uint256 tokenId);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC721InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC721InvalidOperator(address operator);
}

/**
 * @dev Standard ERC-1155 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens.
 */
interface IERC1155Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     * @param tokenId Identifier number of a token.
     */
    error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC1155InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC1155InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param owner Address of the current owner of a token.
     */
    error ERC1155MissingApprovalForAll(address operator, address owner);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC1155InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC1155InvalidOperator(address operator);

    /**
     * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
     * Used in batch transfers.
     * @param idsLength Length of the array of token identifiers
     * @param valuesLength Length of the array of token amounts
     */
    error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}

File 27 of 33 : IERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[ERC].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

File 28 of 33 : Panic.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 *
 * _Available since v5.1._
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        assembly ("memory-safe") {
            mstore(0x00, 0x4e487b71)
            mstore(0x20, code)
            revert(0x1c, 0x24)
        }
    }
}

File 29 of 33 : SafeCast.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }

    /**
     * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
     */
    function toUint(bool b) internal pure returns (uint256 u) {
        assembly ("memory-safe") {
            u := iszero(iszero(b))
        }
    }
}

File 30 of 33 : IERC1155Receiver.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC1155/IERC1155Receiver.sol)

pragma solidity ^0.8.20;

import {IERC165} from "../../utils/introspection/IERC165.sol";

/**
 * @dev Interface that must be implemented by smart contracts in order to receive
 * ERC-1155 token transfers.
 */
interface IERC1155Receiver is IERC165 {
    /**
     * @dev Handles the receipt of a single ERC-1155 token type. This function is
     * called at the end of a `safeTransferFrom` after the balance has been updated.
     *
     * NOTE: To accept the transfer, this must return
     * `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))`
     * (i.e. 0xf23a6e61, or its own function selector).
     *
     * @param operator The address which initiated the transfer (i.e. msg.sender)
     * @param from The address which previously owned the token
     * @param id The ID of the token being transferred
     * @param value The amount of tokens being transferred
     * @param data Additional data with no specified format
     * @return `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))` if transfer is allowed
     */
    function onERC1155Received(
        address operator,
        address from,
        uint256 id,
        uint256 value,
        bytes calldata data
    ) external returns (bytes4);

    /**
     * @dev Handles the receipt of a multiple ERC-1155 token types. This function
     * is called at the end of a `safeBatchTransferFrom` after the balances have
     * been updated.
     *
     * NOTE: To accept the transfer(s), this must return
     * `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))`
     * (i.e. 0xbc197c81, or its own function selector).
     *
     * @param operator The address which initiated the batch transfer (i.e. msg.sender)
     * @param from The address which previously owned the token
     * @param ids An array containing ids of each token being transferred (order and length must match values array)
     * @param values An array containing amounts of each token being transferred (order and length must match ids array)
     * @param data Additional data with no specified format
     * @return `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))` if transfer is allowed
     */
    function onERC1155BatchReceived(
        address operator,
        address from,
        uint256[] calldata ids,
        uint256[] calldata values,
        bytes calldata data
    ) external returns (bytes4);
}

File 31 of 33 : Comparators.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Comparators.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides a set of functions to compare values.
 *
 * _Available since v5.1._
 */
library Comparators {
    function lt(uint256 a, uint256 b) internal pure returns (bool) {
        return a < b;
    }

    function gt(uint256 a, uint256 b) internal pure returns (bool) {
        return a > b;
    }
}

File 32 of 33 : SlotDerivation.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/SlotDerivation.sol)
// This file was procedurally generated from scripts/generate/templates/SlotDerivation.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for computing storage (and transient storage) locations from namespaces and deriving slots
 * corresponding to standard patterns. The derivation method for array and mapping matches the storage layout used by
 * the solidity language / compiler.
 *
 * See https://docs.soliditylang.org/en/v0.8.20/internals/layout_in_storage.html#mappings-and-dynamic-arrays[Solidity docs for mappings and dynamic arrays.].
 *
 * Example usage:
 * ```solidity
 * contract Example {
 *     // Add the library methods
 *     using StorageSlot for bytes32;
 *     using SlotDerivation for bytes32;
 *
 *     // Declare a namespace
 *     string private constant _NAMESPACE = "<namespace>" // eg. OpenZeppelin.Slot
 *
 *     function setValueInNamespace(uint256 key, address newValue) internal {
 *         _NAMESPACE.erc7201Slot().deriveMapping(key).getAddressSlot().value = newValue;
 *     }
 *
 *     function getValueInNamespace(uint256 key) internal view returns (address) {
 *         return _NAMESPACE.erc7201Slot().deriveMapping(key).getAddressSlot().value;
 *     }
 * }
 * ```
 *
 * TIP: Consider using this library along with {StorageSlot}.
 *
 * NOTE: This library provides a way to manipulate storage locations in a non-standard way. Tooling for checking
 * upgrade safety will ignore the slots accessed through this library.
 *
 * _Available since v5.1._
 */
library SlotDerivation {
    /**
     * @dev Derive an ERC-7201 slot from a string (namespace).
     */
    function erc7201Slot(string memory namespace) internal pure returns (bytes32 slot) {
        assembly ("memory-safe") {
            mstore(0x00, sub(keccak256(add(namespace, 0x20), mload(namespace)), 1))
            slot := and(keccak256(0x00, 0x20), not(0xff))
        }
    }

    /**
     * @dev Add an offset to a slot to get the n-th element of a structure or an array.
     */
    function offset(bytes32 slot, uint256 pos) internal pure returns (bytes32 result) {
        unchecked {
            return bytes32(uint256(slot) + pos);
        }
    }

    /**
     * @dev Derive the location of the first element in an array from the slot where the length is stored.
     */
    function deriveArray(bytes32 slot) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, slot)
            result := keccak256(0x00, 0x20)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, address key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, and(key, shr(96, not(0))))
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, bool key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, iszero(iszero(key)))
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, bytes32 key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, key)
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, uint256 key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, key)
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, int256 key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, key)
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, string memory key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            let length := mload(key)
            let begin := add(key, 0x20)
            let end := add(begin, length)
            let cache := mload(end)
            mstore(end, slot)
            result := keccak256(begin, add(length, 0x20))
            mstore(end, cache)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, bytes memory key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            let length := mload(key)
            let begin := add(key, 0x20)
            let end := add(begin, length)
            let cache := mload(end)
            mstore(end, slot)
            result := keccak256(begin, add(length, 0x20))
            mstore(end, cache)
        }
    }
}

File 33 of 33 : StorageSlot.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for reading and writing primitive types to specific storage slots.
 *
 * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
 * This library helps with reading and writing to such slots without the need for inline assembly.
 *
 * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
 *
 * Example usage to set ERC-1967 implementation slot:
 * ```solidity
 * contract ERC1967 {
 *     // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
 *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
 *
 *     function _getImplementation() internal view returns (address) {
 *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
 *     }
 *
 *     function _setImplementation(address newImplementation) internal {
 *         require(newImplementation.code.length > 0);
 *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
 *     }
 * }
 * ```
 *
 * TIP: Consider using this library along with {SlotDerivation}.
 */
library StorageSlot {
    struct AddressSlot {
        address value;
    }

    struct BooleanSlot {
        bool value;
    }

    struct Bytes32Slot {
        bytes32 value;
    }

    struct Uint256Slot {
        uint256 value;
    }

    struct Int256Slot {
        int256 value;
    }

    struct StringSlot {
        string value;
    }

    struct BytesSlot {
        bytes value;
    }

    /**
     * @dev Returns an `AddressSlot` with member `value` located at `slot`.
     */
    function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `BooleanSlot` with member `value` located at `slot`.
     */
    function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Bytes32Slot` with member `value` located at `slot`.
     */
    function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Uint256Slot` with member `value` located at `slot`.
     */
    function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Int256Slot` with member `value` located at `slot`.
     */
    function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `StringSlot` with member `value` located at `slot`.
     */
    function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
     */
    function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
        assembly ("memory-safe") {
            r.slot := store.slot
        }
    }

    /**
     * @dev Returns a `BytesSlot` with member `value` located at `slot`.
     */
    function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
     */
    function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
        assembly ("memory-safe") {
            r.slot := store.slot
        }
    }
}

Settings
{
  "remappings": [
    "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
    "ds-test/=lib/openzeppelin-contracts/lib/forge-std/lib/ds-test/src/",
    "erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
    "forge-std/=lib/forge-std/src/",
    "halmos-cheatcodes/=lib/openzeppelin-contracts/lib/halmos-cheatcodes/src/",
    "openzeppelin-contracts/=lib/openzeppelin-contracts/",
    "@solady/=lib/solady/src/",
    "solady/=lib/solady/src/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "ipfs",
    "appendCBOR": true
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "cancun",
  "viaIR": true,
  "libraries": {}
}

Contract Security Audit

Contract ABI

API
[{"inputs":[{"internalType":"address","name":"asset_","type":"address"},{"internalType":"address","name":"oracle_","type":"address"},{"internalType":"address","name":"treasury_","type":"address"},{"internalType":"address","name":"oracleSender_","type":"address"},{"internalType":"bytes32","name":"oracleKey_","type":"bytes32"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AlreadyDeployed","type":"error"},{"inputs":[],"name":"AmountExceedsDepositLimit","type":"error"},{"inputs":[],"name":"CannotRedeemAtThisTime","type":"error"},{"inputs":[],"name":"DepositsAlreadyPaused","type":"error"},{"inputs":[],"name":"DepositsArePaused","type":"error"},{"inputs":[],"name":"DepositsNotPaused","type":"error"},{"inputs":[],"name":"EnforcedPause","type":"error"},{"inputs":[],"name":"ExpectedPause","type":"error"},{"inputs":[],"name":"InsufficientHenlockedBalance","type":"error"},{"inputs":[],"name":"InvalidDepositLimit","type":"error"},{"inputs":[],"name":"InvalidEpochStrike","type":"error"},{"inputs":[],"name":"MaxFeeExceeded","type":"error"},{"inputs":[],"name":"NewLimitTooLow","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[],"name":"ReentrancyGuardReentrantCall","type":"error"},{"inputs":[],"name":"RoundAlreadyExistsOrNotClosed","type":"error"},{"inputs":[],"name":"RoundIsClosed","type":"error"},{"inputs":[],"name":"RoundNotOpened","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"inputs":[],"name":"StaleOracleData","type":"error"},{"inputs":[],"name":"StrikeTooLow","type":"error"},{"inputs":[],"name":"ZeroAddress","type":"error"},{"inputs":[],"name":"ZeroMint","type":"error"},{"inputs":[],"name":"ZeroOracleAddress","type":"error"},{"inputs":[],"name":"ZeroOracleSenderAddress","type":"error"},{"inputs":[],"name":"ZeroRedeemAmount","type":"error"},{"inputs":[],"name":"ZeroTreasuryAddress","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint64","name":"strike","type":"uint64"},{"indexed":false,"internalType":"address","name":"token","type":"address"}],"name":"DeployERC20","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint48","name":"epochId","type":"uint48"},{"indexed":true,"internalType":"uint64","name":"strike","type":"uint64"},{"indexed":false,"internalType":"uint256","name":"newDepositLimit","type":"uint256"}],"name":"DepositLimitUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint48","name":"epochId","type":"uint48"},{"indexed":true,"internalType":"uint64","name":"strike","type":"uint64"}],"name":"DepositsPaused","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint48","name":"epochId","type":"uint48"},{"indexed":true,"internalType":"uint64","name":"strike","type":"uint64"}],"name":"DepositsUnpaused","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"uint256","name":"strike","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Mint","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"reservoir","type":"address"},{"indexed":true,"internalType":"uint64","name":"strike","type":"uint64"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"MintFromReservoir","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"newKey","type":"bytes32"}],"name":"OracleKeyUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"newSender","type":"address"}],"name":"OracleSenderUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"newOracle","type":"address"}],"name":"OracleUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Paused","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"uint64","name":"strike","type":"uint64"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Redeem","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint48","name":"epochId","type":"uint48"},{"indexed":true,"internalType":"uint64","name":"strike","type":"uint64"}],"name":"RoundClosed","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint48","name":"epochId","type":"uint48"},{"indexed":true,"internalType":"uint64","name":"strike","type":"uint64"},{"indexed":false,"internalType":"uint256","name":"depositLimit","type":"uint256"}],"name":"RoundOpened","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"fee","type":"uint256"}],"name":"SetFee","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"treasury","type":"address"}],"name":"SetTreasury","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Unpaused","type":"event"},{"inputs":[],"name":"FEE_BASIS","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MAX_FEE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"asset","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint64","name":"strike","type":"uint64"}],"name":"canRedeem","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint64","name":"strike","type":"uint64"}],"name":"deployERC20","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint64","name":"strike","type":"uint64"}],"name":"deployments","outputs":[{"internalType":"contract IERC20","name":"token","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint64","name":"strike","type":"uint64"}],"name":"epochs","outputs":[{"internalType":"uint48","name":"epochId","type":"uint48"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"fee","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getOracleKey","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint64","name":"strike","type":"uint64"}],"name":"getRoundInfo","outputs":[{"internalType":"bool","name":"exists","type":"bool"},{"internalType":"bool","name":"closed","type":"bool"},{"internalType":"bool","name":"depositsPaused","type":"bool"},{"internalType":"uint256","name":"timestamp","type":"uint256"},{"internalType":"uint256","name":"depositLimit","type":"uint256"},{"internalType":"uint256","name":"totalDeposits","type":"uint256"},{"internalType":"uint256","name":"remainingCapacity","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"hodlMulti","outputs":[{"internalType":"contract henlocked","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint48","name":"epochId","type":"uint48"}],"name":"infos","outputs":[{"internalType":"uint64","name":"strike","type":"uint64"},{"internalType":"bool","name":"closed","type":"bool"},{"internalType":"bool","name":"depositsPaused","type":"bool"},{"internalType":"uint256","name":"timestamp","type":"uint256"},{"internalType":"uint256","name":"depositLimit","type":"uint256"},{"internalType":"uint256","name":"totalDeposits","type":"uint256"},{"internalType":"address","name":"reservoir","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint64","name":"strike","type":"uint64"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"minimumWhaleMatch","type":"uint256"}],"name":"mint","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"nextId","outputs":[{"internalType":"uint48","name":"","type":"uint48"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint64","name":"strike","type":"uint64"},{"internalType":"uint256","name":"depositLimit","type":"uint256"},{"internalType":"address","name":"reservoir","type":"address"}],"name":"openRound","outputs":[{"internalType":"uint48","name":"","type":"uint48"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"oracle","outputs":[{"internalType":"contract IOracleChainsight","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"oracleSender","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint64","name":"strike","type":"uint64"}],"name":"pauseDeposits","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"paused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"value","type":"uint256"}],"name":"previewMint","outputs":[{"internalType":"uint256","name":"depositAfterFee","type":"uint256"},{"internalType":"uint256","name":"feeAmount","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint64","name":"strike","type":"uint64"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"redeem","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"fee_","type":"uint256"}],"name":"setFee","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOracle","type":"address"}],"name":"setOracle","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"newKey","type":"bytes32"}],"name":"setOracleKey","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newSender","type":"address"}],"name":"setOracleSender","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"treasury_","type":"address"}],"name":"setTreasury","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"treasury","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"unpause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint64","name":"strike","type":"uint64"}],"name":"unpauseDeposits","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint64","name":"strike","type":"uint64"},{"internalType":"uint256","name":"newDepositLimit","type":"uint256"}],"name":"updateDepositLimit","outputs":[],"stateMutability":"nonpayable","type":"function"}]

60c03461023557601f614a1e38819003918201601f19168301926001600160401b03929091838511838610176101c8578160a092849260409788528339810103126102355761004d81610239565b9061005a60208201610239565b90610066858201610239565b90608061007560608301610239565b9101519360015f55331561021e576001548751946001600160a01b03929091839190338382167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e05f80a36001600160d81b0319163366ffffffffffffff60a01b191617600160a81b176001555f6002551694851561020f575081169283156101fe5781169182156101ed57169283156101dc5760805260018060a01b0319918260035416176003558160045416176004556005541617600555600655815190611db480830191838310908311176101c85783918391612c6a8339602081525f60208201520301905ff080156101be5760a05251612a1c908161024e82396080518181816103640152818161103a015281816112be01526116ff015260a05181818161028a0152818161098c01528181610dd20152818161106f015281816111aa01526116bb0152f35b50513d5f823e3d90fd5b634e487b7160e01b5f52604160045260245ffd5b8651636a37f5a560e11b8152600490fd5b87516351dc806d60e11b8152600490fd5b875163dc6d352160e01b8152600490fd5b63d92e233d60e01b8152600490fd5b8651631e4fbdf760e01b81525f6004820152602490fd5b5f80fd5b51906001600160a01b03821682036102355756fe6080806040526004361015610012575f80fd5b5f905f3560e01c90816302e7940514611796575080630e9d7dd11461172e57806338d52e0f146116ea5780633a59aac7146116a65780633f4ba83a14611635578063473d0452146115f55780634bd2d7f9146115b5578063508f3630146115985780635bc90b52146115525780635c975abb1461152d57806361b8ce8c1461150557806361d027b3146114dd57806369fe0e2d1461146a5780636e5deac414610f3f578063715018a614610ee25780637a94043714610d825780637adbf97314610d1a5780637dc0d1d014610cf15780637f815e5614610cc35780638456cb5914610c605780638686ebcc14610c435780638da5cb5b14610c1a57806396d457af146108a3578063b3d7f6b914610878578063bc063e1a1461085b578063c889fd7d146107ae578063d9d02b01146106f6578063ddca3f43146106d8578063ddcaddbf146105f3578063eb3b8a5f1461055a578063ef113d0f14610503578063f0f442601461046d578063f1378457146102205763f2fde38b14610194575f80fd5b3461021d57602036600319011261021d576101ad6117b9565b6101b5611a3d565b6001600160a01b0390811690811561020457600154826001600160601b0360a01b821617600155167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e05f80a380f35b604051631e4fbdf760e01b815260048101849052602490fd5b80fd5b503461021d57604036600319011261021d5761023a6117cf565b60243590610246611a69565b811561045b5761025581611898565b1561044957604051627eeac760e11b81523360048201526001600160401b0382811660248301819052602095919391929091907f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316908781604481855afa90811561043e579087918691610409575b50106103f757803b156103f357604051637a94c56560e11b81523360048201526001600160401b0383166024820152604481018790529084908290606490829084905af180156103e8579084916103d0575b505061032990611b34565b60405163a9059cbb60e01b86820152336024820152604480820186905281529260808401908111848210176103bc57600193610388916040527f0000000000000000000000000000000000000000000000000000000000000000611bd0565b6040518481527f53307341a0e8c285b0e4488d042d0ab431a1becc0771bbdb906b57a2b4087594863392a355604051908152f35b634e487b7160e01b5f52604160045260245ffd5b6103d990611813565b6103e457825f61031e565b8280fd5b6040513d86823e3d90fd5b8380fd5b604051630e13fa7160e31b8152600490fd5b809250898092503d8311610437575b6104228183611826565b81010312610433578690515f6102cc565b5f80fd5b503d610418565b6040513d87823e3d90fd5b6040516353193d3760e01b8152600490fd5b60405163dee12e0360e01b8152600490fd5b503461021d57602036600319011261021d576104876117b9565b61048f611a69565b610497611a3d565b6001600160a01b031680156104f15760207fcb7ef3e545f5cdb893f5c568ba710fe08f336375a2d9fd66e161033f8fc09ef39160045490806001600160601b0360a01b831617600455846040519216178152a16001815580f35b60405163d92e233d60e01b8152600490fd5b503461021d57602036600319011261021d5760e06105276105226117cf565b6119ca565b94604094919493929351961515875215156020870152151560408601526060850152608084015260a083015260c0820152f35b503461021d57602036600319011261021d5760043565ffffffffffff81168091036105ef578160409160e093526008602052208054906001810154906002810154600382015491600460018060a01b03910154169260ff604051956001600160401b0381168752818160401c161515602088015260481c16151560408601526060850152608084015260a083015260c0820152f35b5080fd5b503461021d57604036600319011261021d5761060d6117cf565b6001600160401b0360243591610621611a69565b610629611a3d565b1690818352600960205265ffffffffffff6040842054169081156106c65781845260086020526040842060ff815460401c166106b457600381015482106106a257817fbd8c81882ee7e90afad11c4f70486f25c0bc860285d7ba8fd3ee1fde95a607f49260026020930155604051908152a36001815580f35b604051631c362e1160e31b8152600490fd5b604051636d70cc8960e11b8152600490fd5b60405163eed34f0760e01b8152600490fd5b503461021d578060031936011261021d576020600254604051908152f35b503461021d57602036600319011261021d576001600160401b036107186117cf565b610720611a3d565b16808252600960205265ffffffffffff60408320541680156106c657808352600860205260408320805460ff8160401c166106b45760ff8160481c1661079c5760ff60481b191669010000000000000000001790557f023dff3dced99e172de9866eb8fbddaf670d6096c898c86020d86d28c728e6588380a380f35b60405163acf542ab60e01b8152600490fd5b503461021d57602036600319011261021d576001600160401b036107d06117cf565b6107d8611a3d565b16808252600960205265ffffffffffff60408320541680156106c657808352600860205260408320805460ff8160401c166106b45760ff8160481c16156108495760ff60481b191690557fe78dd8e5fb9202ec320b9ef5cc26cc642ee92cafa66816332b1d0b79b39baf618380a380f35b604051632934c26360e21b8152600490fd5b503461021d578060031936011261021d5760206040516103e88152f35b503461021d57602036600319011261021d5760406108976004356119a1565b82519182526020820152f35b503461021d57606036600319011261021d576108bd6117cf565b602435916044356001600160a01b03818116939092918490036104335761092f906108e6611a69565b6108ee611a3d565b604084600354168560055416906006549183518096819482936357732dbb60e11b84526004840160209093929193604081019460018060a01b031681520152565b03915afa908115610c0f5783928492610bdb575b506001600160401b03808092169316831115610bc9576109628261187f565b81804216911610610bb7576040519163bd85b03960e01b835283600484015260209788846024818a7f0000000000000000000000000000000000000000000000000000000000000000165afa938415610bac578694610b7d575b5083811115610b6b578486526009895265ffffffffffff97886040882054168015159081610b51575b50610b3f57600154898160a81c16998a14610b2b5765ffffffffffff60a81b191660018a810160a81b65ffffffffffff60a81b169190911790556040519760e08901948086118a8710176103bc576001998b97858e97888b6004968f8f906040917fc35303cbdb16af3e918634bdda99307f23696c65fba6f7139e645fe22eb56fe29f835289526008858a0195828752838b01958387528560608d019916895260808c01998a5260a08c019a8b5260c08c019e8f528352522096511669ff00000000000000000068ff000000000000000088549451151560401b169251151560481b169269ffffffffffffffffffff19161717178455518d840155516002830155516003820155019151166001600160601b0360a01b82541617905584865260098252604086208465ffffffffffff19825416179055604051908152a355604051908152f35b634e487b7160e01b88526011600452602488fd5b604051632e6d917160e21b8152600490fd5b9050875260088a5260ff604088205460401c16155f6109e5565b604051637fb1277b60e01b8152600490fd5b9093508881813d8311610ba5575b610b958183611826565b810103126104335751925f6109bc565b503d610b8b565b6040513d88823e3d90fd5b60405163a527363160e01b8152600490fd5b604051630bc672fd60e21b8152600490fd5b909250610c00915060403d604011610c08575b610bf88183611826565b81019061185b565b90915f610943565b503d610bee565b6040513d85823e3d90fd5b503461021d578060031936011261021d576001546040516001600160a01b039091168152602090f35b503461021d578060031936011261021d5760206040516127108152f35b503461021d578060031936011261021d57610c79611a3d565b610c81611a8a565b6001805460ff60a01b1916600160a01b1790556040513381527f62e78cea01bee320cd4e420270b5ea74000d11b0c9f74754ebdbfc544b05a25890602090a180f35b503461021d57602036600319011261021d576020610ce7610ce26117cf565b611898565b6040519015158152f35b503461021d578060031936011261021d576003546040516001600160a01b039091168152602090f35b503461021d57602036600319011261021d57610d346117b9565b610d3c611a3d565b600380546001600160a01b0319166001600160a01b039290921691821790557f3df77beb5db05fcdd70a30fc8adf3f83f9501b68579455adbd100b81809403948280a280f35b503461021d576020908160031936011261021d57610d9e6117cf565b90610da7611a69565b6001600160401b039182168082526007845260408220546001600160a01b03908116610ed0576040517f0000000000000000000000000000000000000000000000000000000000000000821694610dbc80830191821183831017610ebc576040918391611c2b8339878152858982015203019084f08015610c0f571692803b156103e457828091602460405180948193635b52ebef60e11b83528960048401525af18015610c0f57610ea8575b50908160019282526007855260408220846001600160601b0360a01b8254161790557f5ca11f4052e8cadbe59c1a0cd3acc22f4977f49509b0f7cd04d2dbb19aa5940c85604051868152a255604051908152f35b610eb28391611813565b6105ef575f610e54565b634e487b7160e01b86526041600452602486fd5b60405163a6ef0ba160e01b8152600490fd5b503461021d578060031936011261021d57610efb611a3d565b600180546001600160a01b031981169091555f906001600160a01b03167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08280a380f35b503461043357606036600319011261043357610f596117cf565b60243590610f65611a69565b610f6d611a8a565b6001600160401b0381165f52600960205265ffffffffffff60405f20541680156106c6575f52600860205260405f2091825460ff8160401c166106b45760481c60ff1661145857801561144657610fd0610fc960025483611aab565b80926117e5565b9260038101805492610fe28685611806565b9360028401548095116114345760048401545f956001600160a01b039091169182611331575b505050611016868354611806565b9182815560443585106112fb578415159285846112e8575b505050806112aa575b507f00000000000000000000000000000000000000000000000000000000000000009061106686303385611ada565b61113c575b50507f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03169050803b156103f357604051630ab714fb60e11b81523360048201526001600160401b0383166024820152604481018490529084908290606490829084905af180156103e857611128575b506020926001916001600160401b036040519185835216907f4c209b5fc8ad50758f13e2e1088ba56a560dff690a1c6fef26394f4c03821c4f863392a355604051908152f35b6111328491611813565b6103e4575f6110e2565b60048201546001600160a01b0316803b15610433575f80916024604051809481936395e1d97760e01b83528960048401525af1801561129f5761128c575b508261119591309060018060a01b0360048601541690611ada565b600481015485906001600160a01b03908116907f000000000000000000000000000000000000000000000000000000000000000016803b156103e457604051630ab714fb60e11b81526001600160a01b039290921660048301526001600160401b03861660248301526044820185905282908290606490829084905af1801561128157611269575b5050600460018060a01b03910154166040519182527fef970e06880f8548844c9f7420575bbf879f646b6f7b8f4c241ca6b7678e4eb060206001600160401b03851693a35f808061106b565b61127290611813565b61127d57845f61121d565b8480fd5b6040513d84823e3d90fd5b611297919650611813565b5f948261117a565b6040513d5f823e3d90fd5b6004546112e291906001600160a01b0316337f0000000000000000000000000000000000000000000000000000000000000000611ada565b5f611037565b6112f191611806565b90555f808561102e565b60405162461bcd60e51b815260206004820152600e60248201526d5768616c6520736c69707061676560901b6044820152606490fd5b604051637cb5dbbd60e11b815290602082600481875afa801561129f578a925f916113f4575b50611363575b50611008565b5f9497509161137861137e9260209594611806565b906117e5565b8089106113ed575b6024906040519485938492630d384a6f60e11b845260048401525af190811561129f575f916113bb575b50925f80878161135d565b90506020813d6020116113e5575b816113d660209383611826565b8101031261043357515f6113b0565b3d91506113c9565b5087611386565b919250506020813d60201161142c575b8161141160209383611826565b8101031261043357519081151582036104335789915f611357565b3d9150611404565b604051639670687960e01b8152600490fd5b60405163a776bb4d60e01b8152600490fd5b604051630b4cba3160e31b8152600490fd5b3461043357602036600319011261043357600435611486611a69565b61148e611a3d565b6103e881116114cb576020817e172ddfc5ae88d08b3de01a5a187667c37a5a53989e8c175055cb6c993792a792600255604051908152a160015f55005b60405163f4df6ae560e01b8152600490fd5b34610433575f366003190112610433576004546040516001600160a01b039091168152602090f35b34610433575f36600319011261043357602065ffffffffffff60015460a81c16604051908152f35b34610433575f36600319011261043357602060ff60015460a01c166040519015158152f35b346104335760203660031901126104335760043561156e611a3d565b806006557f54ef723920b7713f0db1bd7930ad9789cc963b5df84af3396860d2cd45d0ec815f80a2005b34610433575f366003190112610433576020600654604051908152f35b34610433576020366003190112610433576001600160401b036115d66117cf565b165f526009602052602065ffffffffffff60405f205416604051908152f35b34610433576020366003190112610433576001600160401b036116166117cf565b165f526007602052602060018060a01b0360405f205416604051908152f35b34610433575f3660031901126104335761164d611a3d565b60015460ff8160a01c16156116945760ff60a01b19166001556040513381527f5db9ee0a495bf2e6ff9c91a7834c1ba4fdd244a5e8aa4e537bd38aeae4b073aa90602090a1005b604051638dfc202b60e01b8152600490fd5b34610433575f366003190112610433576040517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b34610433575f366003190112610433576040517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b34610433576020366003190112610433576117476117b9565b61174f611a3d565b6001600160a01b031680156104f157600580546001600160a01b031916821790557fba2b62c9461657dff915dd9c97496dc57d1ff2cf348b2b947cc5e9e72947b1425f80a2005b34610433575f366003190112610433576005546001600160a01b03168152602090f35b600435906001600160a01b038216820361043357565b600435906001600160401b038216820361043357565b919082039182116117f257565b634e487b7160e01b5f52601160045260245ffd5b919082018092116117f257565b6001600160401b0381116103bc57604052565b90601f801991011681019081106001600160401b038211176103bc57604052565b51906001600160401b038216820361043357565b91908260409103126104335761187c602061187584611847565b9301611847565b90565b90610e106001600160401b03809316019182116117f257565b6001600160401b0380911690815f52600960205260409065ffffffffffff825f2054165f526008602052815f209260ff8454841c166119985760035460055460065485516357732dbb60e11b81526001600160a01b039283166004820152602481019190915291859183916044918391165afa93841561198f575f915f9561196e575b506119258561187f565b8480421691161061195e575082161015928361194c575b505050611947575f90565b600190565b600101549116101590505f808061193c565b5163a527363160e01b8152600490fd5b9080955061198892503d8611610c0857610bf88183611826565b935f61191b565b513d5f823e3d90fd5b50505050600190565b9060025480155f146119b257505f90565b6119bf6119c69184611aab565b80936117e5565b9190565b6001600160401b03165f52600960205265ffffffffffff60405f2054168015611a2c575f52600860205260405f2080549060018101549060036002820154910154611a1581836117e5565b60019560ff808760401c169660481c169493929190565b505f905f905f905f905f905f905f90565b6001546001600160a01b03163303611a5157565b60405163118cdaa760e01b8152336004820152602490fd5b60025f5414611a785760025f55565b604051633ee5aeb560e01b8152600490fd5b60ff60015460a01c16611a9957565b60405163d93c066560e01b8152600490fd5b81810291612710918291818504149015170215611acd57808204910615150190565b63ad251c275f526004601cfd5b6040516323b872dd60e01b60208201526001600160a01b03928316602482015292909116604483015260648083019390935291815260a08101918183106001600160401b038411176103bc57611b3292604052611bd0565b565b6001600160401b0380911690815f52600960205265ffffffffffff60405f20541690815f52600860205260405f209081549060ff8260401c16611bc957811615611bb75768ff00000000000000001916680100000000000000001790557ff93f4d3a19af6703dc8c284b246c3681ae2e0087236087d929b85670589576d35f80a3565b604051631b086e7b60e11b8152600490fd5b5050505050565b905f602091828151910182855af11561129f575f513d611c2157506001600160a01b0381163b155b611bff5750565b604051635274afe760e01b81526001600160a01b039091166004820152602490fd5b60011415611bf856fe60c0604090808252346103e8578181610dbc803803809161002082856103ec565b8339810103126103e85780516001600160a01b039190828116908190036103e8576020918201516001600160401b039283821692918390036103e85781156103e8575f92826080528060a052865193848094622b600360e21b82526004938483015260249586915afa9384156103de575f946103c2575b508351958587116103b0576001968754958887811c971680156103a6575b85881014610394578190601f97888111610346575b5085908883116001146102e7575f926102dc575b50505f19600383901b1c191690881b1787555b60805116925f60a051828a5180978193634e41a1fb60e01b8352878301525afa9384156102d2575f946102ae575b50835195861161029c57600254918783811c93168015610292575b8484101461028157505083811161023d575b50809284116001146101d957509282939183925f946101ce575b50501b915f199060031b1c1916176002555b51610931908161048b8239608051818181610146015281816103970152818161041b015281816104d10152610671015260a05181818160fb015281816101920152818161036a0152818161052001526106430152f35b015192505f80610166565b919083601f19811660025f52845f20945f905b88838310610223575050501061020b575b505050811b01600255610178565b01515f1960f88460031b161c191690555f80806101fd565b8587015188559096019594850194879350908101906101ec565b60025f52815f208480870160051c820192848810610278575b0160051c019086905b82811061026d57505061014c565b5f815501869061025f565b92508192610256565b602290634e487b7160e01b5f52525ffd5b92607f169261013a565b634e487b7160e01b5f90815260418352fd5b6102cb9194503d805f833e6102c381836103ec565b810190610423565b925f61011f565b88513d5f823e3d90fd5b015190505f806100de565b908a9350601f19831691845f52875f20925f5b898282106103305750508411610318575b505050811b0187556100f1565b01515f1960f88460031b161c191690555f808061030b565b8385015186558e979095019493840193016102fa565b909150895f52855f208880850160051c82019288861061038b575b918c91869594930160051c01915b82811061037d5750506100ca565b5f81558594508c910161036f565b92508192610361565b85602285634e487b7160e01b5f52525ffd5b96607f16966100b5565b83604183634e487b7160e01b5f52525ffd5b6103d79194503d805f833e6102c381836103ec565b925f610097565b87513d5f823e3d90fd5b5f80fd5b601f909101601f19168101906001600160401b0382119082101761040f57604052565b634e487b7160e01b5f52604160045260245ffd5b602080828403126103e85781516001600160401b03928382116103e857019183601f840112156103e857825190811161040f576040519361046d601f8301601f19168401866103ec565b8185528282850101116103e85780825f94018386015e830101529056fe6080604090808252600480361015610015575f80fd5b5f3560e01c91826306fdde031461079e57508163095ea7b3146106f157816318160ddd1461062457816323b872dd14610465578163313ce5671461044a5781633a59aac71461040757816370a082311461032d57816395d89b411461022b578163a9059cbb1461011e57508063ad8f5008146100e45763dd62ed3e14610099575f80fd5b346100e057806003193601126100e0576020906100b4610885565b6100bc61089b565b9060018060a01b038091165f525f8452825f2091165f528252805f20549051908152f35b5f80fd5b50346100e0575f3660031901126100e057602090517f00000000000000000000000000000000000000000000000000000000000000008152f35b82346100e057806003193601126100e057610137610885565b602435906001600160a01b03907f00000000000000000000000000000000000000000000000000000000000000008216803b156100e05784516361f3f6e960e01b8152339681019687526001600160a01b03831660208801527f0000000000000000000000000000000000000000000000000000000000000000604088015260608701859052955f91879182908490829060800103925af194851561022157602095610212575b50835192835216907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef843392a35160018152f35b61021b906108b1565b856101de565b84513d5f823e3d90fd5b82346100e0575f3660031901126100e0578051905f9260025460018160011c91600181168015610323575b602094858510821461031057508387529081156102f05750600114610296575b505050610288826102929403836108d9565b519182918261085b565b0390f35b60025f9081529295507f405787fa12a823e0f2b7631cc41b3ba8828b3321ca811111fa75cd3aa3bb5ace5b8284106102dd5750505082610292946102889282010194610276565b80548685018801529286019281016102c1565b60ff1916868501525050151560051b830101925061028882610292610276565b602290634e487b7160e01b5f525260245ffd5b92607f1692610256565b9050346100e057602091826003193601126100e0578261034b610885565b8251627eeac760e11b81526001600160a01b03918216948101949094527f00000000000000000000000000000000000000000000000000000000000000006024850152839060449082907f0000000000000000000000000000000000000000000000000000000000000000165afa9182156103fd575f926103ce575b5051908152f35b9091508281813d83116103f6575b6103e681836108d9565b810103126100e05751905f6103c7565b503d6103dc565b50513d5f823e3d90fd5b82346100e0575f3660031901126100e057517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b82346100e0575f3660031901126100e0576020905160128152f35b82346100e05760603660031901126100e05761047f610885565b9161048861089b565b906044359160018060a01b039081861692835f526020965f8852865f20335f52885285875f2054106105f057845f525f8852865f20335f5288525f19875f2054036105b9575b837f00000000000000000000000000000000000000000000000000000000000000001691823b156100e05787516361f3f6e960e01b81526001600160a01b0392831691810191825291841660208201527f000000000000000000000000000000000000000000000000000000000000000060408201526060810187905290915f9183919082908490829060800103925af180156105af57917fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef939188936105a0575b5086519586521693a35160018152f35b6105a9906108b1565b88610590565b86513d5f823e3d90fd5b845f525f8852865f20335f528852865f208054908782039182116105dd57556104ce565b601184634e487b7160e01b5f525260245ffd5b865162461bcd60e51b8152808301899052600e60248201526d1b9bdd08185d5d1a1bdc9a5e995960921b6044820152606490fd5b82346100e0575f3660031901126100e057805163bd85b03960e01b81527f0000000000000000000000000000000000000000000000000000000000000000928101929092526020826024817f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03165afa9081156106e8575f916106b3575b6020925051908152f35b90506020823d6020116106e0575b816106ce602093836108d9565b810103126100e05760209151906106a9565b3d91506106c1565b513d5f823e3d90fd5b82346100e057806003193601126100e05761070a610885565b6001600160a01b031660243581156107645760209350335f525f8452825f20825f52845280835f205582519081527f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925843392a35160018152f35b825162461bcd60e51b81526020818601526014602482015273617070726f7665207a65726f206164647265737360601b6044820152606490fd5b83346100e0575f3660031901126100e0575f9260018054908160011c91600181168015610851575b602094858510821461031057508387529081156102f057506001146107f757505050610288826102929403836108d9565b60015f9081529295507fb10e2d527612073b26eecdfd717e6a320cf44b4afac2b0732d9fcbe2b7fa0cf65b82841061083e5750505082610292946102889282010194610276565b8054868501880152928601928101610822565b92607f16926107c6565b602060409281835280519182918282860152018484015e5f828201840152601f01601f1916010190565b600435906001600160a01b03821682036100e057565b602435906001600160a01b03821682036100e057565b67ffffffffffffffff81116108c557604052565b634e487b7160e01b5f52604160045260245ffd5b90601f8019910116810190811067ffffffffffffffff8211176108c55760405256fea26469706673582212207f3711ca38e587c8d8e1da805191c92c4123070a29e49baa108d17ee3d3c52d964736f6c63430008190033a2646970667358221220454358eb0b9f92eca5fb7dc710ed2d5dd0cb3de3c4e7836139038914c9f9042d64736f6c6343000819003360806040523461023257611db48038038061001981610236565b928339810190602080828403126102325781516001600160401b0392838211610232570192601f9080828601121561023257845184811161021e57601f199561006782850188168601610236565b9282845285838301011161023257815f92868093018386015e83010152805193841161021e57600254926001938481811c91168015610214575b82821014610200578381116101bc575b508092851160011461015a5750839450908392915f9461014f575b50501b915f199060031b1c1916176002555b33156101375760038054336001600160a01b03198216811790925560405191906001600160a01b03167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e05f80a3611b58908161025c8239f35b604051631e4fbdf760e01b81525f6004820152602490fd5b015192505f806100cc565b92948490811660025f52845f20945f905b888383106101a2575050501061018a575b505050811b016002556100de565b01515f1960f88460031b161c191690555f808061017c565b85870151885590960195948501948793509081019061016b565b60025f52815f208480880160051c8201928489106101f7575b0160051c019085905b8281106101ec5750506100b1565b5f81550185906101de565b925081926101d5565b634e487b7160e01b5f52602260045260245ffd5b90607f16906100a1565b634e487b7160e01b5f52604160045260245ffd5b5f80fd5b6040519190601f01601f191682016001600160401b0381118382101761021e5760405256fe60806040526004361015610011575f80fd5b5f3560e01c8062ad800c1461011f578062fdd58e1461013d57806301ffc9a7146101385780630e89341c14610133578063156e29f61461012e5780632eb2c2d6146101295780634e1273f4146101245780634e41a1fb1461011f57806361f3f6e91461011a578063715018a6146101155780638da5cb5b14610110578063a22cb4651461010b578063b6a5d7de14610106578063b918161114610101578063bd85b039146100fc578063e985e9c5146100f7578063f242432a146100f2578063f2fde38b146100ed5763f5298aca146100e8575f80fd5b610e33565b610da7565b610c8c565b610c30565b610c06565b610bc9565b610b61565b610aaa565b610a82565b610a27565b610985565b61017a565b6108ca565b610760565b6103ea565b6102bd565b61024f565b6101f5565b805180835260209291819084018484015e5f828201840152601f01601f1916010190565b906020610177928181520190610142565b90565b346101b15760203660031901126101b1576101ad61019960043561107d565b604051918291602083526020830190610142565b0390f35b5f80fd5b600435906001600160a01b03821682036101b157565b602435906001600160a01b03821682036101b157565b35906001600160a01b03821682036101b157565b346101b15760403660031901126101b15760206102346102136101b5565b6024355f525f835260405f209060018060a01b03165f5260205260405f2090565b54604051908152f35b6001600160e01b03198116036101b157565b346101b15760203660031901126101b157602060043561026e8161023d565b63ffffffff60e01b16636cdb3d1360e11b81149081156102ac575b811561029b575b506040519015158152f35b6301ffc9a760e01b1490505f610290565b6303a24d0760e21b81149150610289565b346101b1576020806003193601126101b157604051905f906002546001918160011c92600183169283156103b6575b6020851084146103a2578487526020870193908115610383575060011461032a575b6101ad8661031e81880382610664565b60405191829182610166565b60025f90815294509192917f405787fa12a823e0f2b7631cc41b3ba8828b3321ca811111fa75cd3aa3bb5ace5b838610610372575050509101905061031e826101ad5f61030e565b805485870152948201948101610357565b60ff1916845250505090151560051b01905061031e826101ad5f61030e565b634e487b7160e01b5f52602260045260245ffd5b93607f16936102ec565b60609060031901126101b1576004356001600160a01b03811681036101b157906024359060443590565b346101b1576103f8366103c0565b610403929192611494565b825f5260209160048352604090815f2080549084820180921161062a575581519061042d82610643565b5f82526001600160a01b0381169485156106135761046b85889160405192600184526020840152604083019160018352606084015260808301604052565b91906104788382866114e5565b80516001036104cf57926104bc92827f4c209b5fc8ad50758f13e2e1088ba56a560dff690a1c6fef26394f4c03821c4f9896936104ca9896015191015191336119f4565b519081529081906020820190565b0390a3005b91839491943b61050a575b50505050507f4c209b5fc8ad50758f13e2e1088ba56a560dff690a1c6fef26394f4c03821c4f916104ca916104bc565b93610533918697949895829a9751938492839263bc197c8160e01b9788855233600486016118e6565b03815f885af15f91816105e4575b5061057f57878787610551611962565b80519384610579578251632bfa23e760e11b81526001600160a01b0385166004820152602490fd5b84925001fd5b90919493965063ffffffff60e09693961b16036105c35750816104ca7f4c209b5fc8ad50758f13e2e1088ba56a560dff690a1c6fef26394f4c03821c4f5f806104da565b9051632bfa23e760e11b81526001600160a01b039091166004820152602490fd5b610605919250893d8b1161060c575b6105fd8183610664565b8101906118d1565b905f610541565b503d6105f3565b8351632bfa23e760e11b81525f6004820152602490fd5b611057565b634e487b7160e01b5f52604160045260245ffd5b6020810190811067ffffffffffffffff82111761065f57604052565b61062f565b90601f8019910116810190811067ffffffffffffffff82111761065f57604052565b67ffffffffffffffff811161065f5760051b60200190565b9080601f830112156101b15760209082356106b881610686565b936106c66040519586610664565b81855260208086019260051b8201019283116101b157602001905b8282106106ef575050505090565b813581529083019083016106e1565b67ffffffffffffffff811161065f57601f01601f191660200190565b81601f820112156101b157803590610731826106fe565b9261073f6040519485610664565b828452602083830101116101b157815f926020809301838601378301015290565b346101b15760a03660031901126101b1576107796101b5565b6107816101cb565b906044359167ffffffffffffffff908184116101b1576107a66004943690860161069e565b906064358381116101b1576107be903690870161069e565b926084359081116101b1576107d6903690870161071a565b936001600160a01b03808216903382141580610863575b6108365783161561081f5715610809576108079550611796565b005b604051626a0d4560e21b81525f81880152602490fd5b604051632bfa23e760e11b81525f81890152602490fd5b6040805163711bec9160e11b815233818b019081526001600160a01b038616602082015290918291010390fd5b505f82815260016020908152604080832033845290915290205460ff16156107ed565b9081518082526020808093019301915f5b8281106108a5575050505090565b835185529381019392810192600101610897565b906020610177928181520190610886565b346101b15760403660031901126101b15760043567ffffffffffffffff8082116101b157366023830112156101b157816004013561090781610686565b926109156040519485610664565b8184526020916024602086019160051b830101913683116101b157602401905b82821061096e57856024358681116101b1576101ad9161095c61096292369060040161069e565b90611294565b604051918291826108b9565b83809161097a846101e1565b815201910190610935565b346101b15760803660031901126101b15761099e6101b5565b6109a66101cb565b90335f52600560205260ff60405f205416156109f157610807916109c8611202565b906109d1611202565b926044356109de8461125f565b526064356109eb8561125f565b526115f9565b60405162461bcd60e51b815260206004820152600e60248201526d139bdd08185d5d1a1bdc9a5e995960921b6044820152606490fd5b346101b1575f3660031901126101b157610a3f611494565b600380546001600160a01b031981169091555f906001600160a01b03167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08280a3005b346101b1575f3660031901126101b1576003546040516001600160a01b039091168152602090f35b346101b15760403660031901126101b157610ac36101b5565b60243590811515908183036101b1576001600160a01b038116928315610b4a57610b0b610b1c92335f52600160205260405f209060018060a01b03165f5260205260405f2090565b9060ff801983541691151516179055565b6040519081527f17307eab39ab6107e8899845ad3d59bd9653f200f220920489ca2b5937696c3160203392a3005b60405162ced3e160e81b81525f6004820152602490fd5b346101b15760203660031901126101b157610b7a6101b5565b610b82611494565b6001600160a01b03165f818152600560205260408120805460ff191660011790557f6d81a01b39982517ba331aeb4f387b0f9cc32334b65bb9a343a077973cf7adf59080a2005b346101b15760203660031901126101b1576001600160a01b03610bea6101b5565b165f526005602052602060ff60405f2054166040519015158152f35b346101b15760203660031901126101b1576004355f526004602052602060405f2054604051908152f35b346101b15760403660031901126101b157602060ff610c80610c506101b5565b610c586101cb565b6001600160a01b039182165f9081526001865260408082209290931681526020919091522090565b54166040519015158152f35b346101b15760a03660031901126101b157610ca56101b5565b610cad6101cb565b60843567ffffffffffffffff81116101b157610ccd90369060040161071a565b906001600160a01b03838116903382141580610d84575b610d5d57821615610d455715610d2e5761080792610d266064356044359160405192600184526020840152604083019160018352606084015260808301604052565b929091611796565b604051626a0d4560e21b81525f6004820152602490fd5b604051632bfa23e760e11b81525f6004820152602490fd5b60405163711bec9160e11b81523360048201526001600160a01b0386166024820152604490fd5b505f82815260016020908152604080832033845290915290205460ff1615610ce4565b346101b15760203660031901126101b157610dc06101b5565b610dc8611494565b6001600160a01b03908116908115610e1b57600354826bffffffffffffffffffffffff60a01b821617600355167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e05f80a3005b604051631e4fbdf760e01b81525f6004820152602490fd5b346101b157610e41366103c0565b90610e4a611494565b805f526004602060048152604090815f2080549086820391821161062a57556001600160a01b038616801561104157610ea386869160405192600184526020840152604083019160018352606084015260808301604052565b9590915f8551610eb281610643565b5282518751908181036110205750505f5b8351811015610f6f578060051b8a86808388010151928b010151610f0782610ef2855f525f60205260405f2090565b9060018060a01b03165f5260205260405f2090565b54818110610f325791610ef2610f2b92600196959403935f525f60205260405f2090565b5501610ec3565b89516303dee4c560e01b81526001600160a01b03909316838c01908152602081019190915260408101919091526060810183905281906080010390fd5b507f49995e5dd6158cf69ad3e9777c46755a1a826a446c6416992167462dad033b2a8489875f85888d8660018351148514610fe557918201519101518451918252602082015233907fc3d58168c5ae7397731d063d5bbf3d657854427343f4c083240f7aacaa2d0f6290604090a45b51908152a3005b506110187f4a39dc06d4c0dbc64b70af90fd698a233a518aa5d07e595d983b8c0526c8f7fb9186519182913395836114c0565b0390a4610fde565b8651635b05999160e01b815260048101919091526024810191909152604490fd5b8251626a0d4560e21b81525f6004820152602490fd5b634e487b7160e01b5f52601160045260245ffd5b805191908290602001825e015f815290565b6103e880820491620186a091908284106110ed5750506110a4610177916110d09304611352565b6110df6040519384926110ca602085016901a195b9b1bd8dad959160b61b8152600a0190565b9061106b565b6218183160e91b815260030190565b03601f198101835282610664565b90915081831061117557508060649183049206048061112357506101776110a461111692611352565b603160f91b815260010190565b610177906110df61111661114261113c61116896611352565b93611352565b6110ca6040519687956110ca602088016901a195b9b1bd8dad959160b61b8152600a0190565b601760f91b815260010190565b82156111d557606483106111a15750506101776110a461119492611352565b606d60f81b815260010190565b906064910604806111bc57506101776110a461119492611352565b610177906110df61119461114261113c61116896611352565b6111e8925061017791506110a490611352565b606b60f81b815260010190565b9190820180921161062a57565b604051906040820182811067ffffffffffffffff82111761065f576040526001825260203681840137565b9061123782610686565b6112446040519182610664565b8281528092611255601f1991610686565b0190602036910137565b80511561126c5760200190565b634e487b7160e01b5f52603260045260245ffd5b805182101561126c5760209160051b010190565b919091805183518082036113085750506112ae815161122d565b905f5b815181101561130157806112ef60019260051b5f602080808489010151938b01015182525260405f209060018060a01b03165f5260205260405f2090565b546112fa8286611280565b52016112b1565b5090925050565b604051635b05999160e01b815260048101919091526024810191909152604490fd5b90611334826106fe565b6113416040519182610664565b8281528092611255601f19916106fe565b805f917a184f03e93ff9f4daa797ed6e38ed64bf6a1f01000000000000000080821015611486575b506d04ee2d6d415b85acef810000000080831015611477575b50662386f26fc1000080831015611468575b506305f5e10080831015611459575b506127108083101561144a575b50606482101561143a575b600a80921015611430575b6001908160216113e96001870161132a565b95860101905b6113fb575b5050505090565b5f19019083906f181899199a1a9b1b9c1cb0b131b232b360811b8282061a83530491821561142b579190826113ef565b6113f4565b91600101916113d7565b91906064600291049101916113cc565b6004919392049101915f6113c1565b6008919392049101915f6113b4565b6010919392049101915f6113a5565b6020919392049101915f611393565b60409350810491505f61137a565b6003546001600160a01b031633036114a857565b60405163118cdaa760e01b8152336004820152602490fd5b90916114d761017793604084526040840190610886565b916020818403910152610886565b91909182518251908181036113085750505f5b835181101561155c57600581901b84810160209081015191850101516001929184906001600160a01b038216611532575b505050016114f8565b61155291610ef261154a925f525f60205260405f2090565b9182546111f5565b90555f8381611529565b509160018151145f146115bb576020908101519181015160408051938452918301526001600160a01b03909216915f9133917fc3d58168c5ae7397731d063d5bbf3d657854427343f4c083240f7aacaa2d0f629190819081015b0390a4565b7f4a39dc06d4c0dbc64b70af90fd698a233a518aa5d07e595d983b8c0526c8f7fb6115b65f939460405191829160018060a01b0316963395836114c0565b93929180518351908181036113085750505f5b81518110156116f157600581901b82810160209081015191860101516001600160a01b0392918590898516611671575b600194821661164f575b5050500161160c565b61166791610ef261154a925f525f60205260405f2090565b90555f8481611646565b919293905061168b89610ef2845f525f60205260405f2090565b548381106116ba57918691846001969594036116b28c610ef2855f525f60205260405f2090565b55945061163c565b6040516303dee4c560e01b81526001600160a01b038b16600482015260248101919091526044810184905260648101839052608490fd5b508051939493919291600103611753576020908101519181015160408051938452918301526001600160a01b03928316939092169133917fc3d58168c5ae7397731d063d5bbf3d657854427343f4c083240f7aacaa2d0f6291819081016115b6565b6040516001600160a01b03938416949093169233927f4a39dc06d4c0dbc64b70af90fd698a233a518aa5d07e595d983b8c0526c8f7fb9282916115b691836114c0565b91939290936117a7828287866115f9565b6001600160a01b038516806117bf575b505050505050565b81516001036117e85750936020806117dd9601519201519233611a8a565b5f80808080806117b7565b8594919293943b6117ff575b5050505050506117dd565b611827935f6020946040519687958694859363bc197c8160e01b9b8c86523360048701611930565b03925af15f91816118b0575b506118725782611841611962565b805191908261186b57604051632bfa23e760e11b81526001600160a01b0383166004820152602490fd5b9050602001fd5b6001600160e01b0319160361188d57505f80808080806117f4565b604051632bfa23e760e11b81526001600160a01b03919091166004820152602490fd5b6118ca91925060203d60201161060c576105fd8183610664565b905f611833565b908160209103126101b157516101778161023d565b9261191461017795936119229360018060a01b031686525f602087015260a0604087015260a0860190610886565b908482036060860152610886565b916080818403910152610142565b93906101779593611914916119229460018060a01b03809216885216602087015260a0604087015260a0860190610886565b3d1561198c573d90611973826106fe565b916119816040519384610664565b82523d5f602084013e565b606090565b909260a0926101779594600180861b031683525f6020840152604083015260608201528160808201520190610142565b919261017795949160a094600180871b038092168552166020840152604083015260608201528160808201520190610142565b9293919093843b611a07575b5050505050565b602091611a2a604051948593849363f23a6e6160e01b9889865260048601611991565b03815f6001600160a01b0388165af15f9181611a69575b50611a4f5782611841611962565b6001600160e01b0319160361188d57505f80808080611a00565b611a8391925060203d60201161060c576105fd8183610664565b905f611a41565b939290949194853b611a9e57505050505050565b611ac1602093604051958694859463f23a6e6160e01b998a8752600487016119c1565b03815f6001600160a01b0388165af15f9181611b01575b50611ae65782611841611962565b6001600160e01b0319160361188d57505f80808080806117b7565b611b1b91925060203d60201161060c576105fd8183610664565b905f611ad856fea2646970667358221220582f3b8b29a87023f457dafc272d2fb9338d0beec0dc16fb197e26b85da0771764736f6c63430008190033000000000000000000000000b2f776e9c1c926c4b2e54182fac058da9af0b6a5000000000000000000000000d5f76a363135a0781295043241f18496daa31e3d0000000000000000000000008727b25ece0098c4c5571fbea30257f527bc964500000000000000000000000097de4fa69e79bd9b812111f12f38767ada36e58e77e9b912bc18f8931d6bf02e4a6c8920848a4de015bbe080f36f82639c8db295

Deployed Bytecode

0x6080806040526004361015610012575f80fd5b5f905f3560e01c90816302e7940514611796575080630e9d7dd11461172e57806338d52e0f146116ea5780633a59aac7146116a65780633f4ba83a14611635578063473d0452146115f55780634bd2d7f9146115b5578063508f3630146115985780635bc90b52146115525780635c975abb1461152d57806361b8ce8c1461150557806361d027b3146114dd57806369fe0e2d1461146a5780636e5deac414610f3f578063715018a614610ee25780637a94043714610d825780637adbf97314610d1a5780637dc0d1d014610cf15780637f815e5614610cc35780638456cb5914610c605780638686ebcc14610c435780638da5cb5b14610c1a57806396d457af146108a3578063b3d7f6b914610878578063bc063e1a1461085b578063c889fd7d146107ae578063d9d02b01146106f6578063ddca3f43146106d8578063ddcaddbf146105f3578063eb3b8a5f1461055a578063ef113d0f14610503578063f0f442601461046d578063f1378457146102205763f2fde38b14610194575f80fd5b3461021d57602036600319011261021d576101ad6117b9565b6101b5611a3d565b6001600160a01b0390811690811561020457600154826001600160601b0360a01b821617600155167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e05f80a380f35b604051631e4fbdf760e01b815260048101849052602490fd5b80fd5b503461021d57604036600319011261021d5761023a6117cf565b60243590610246611a69565b811561045b5761025581611898565b1561044957604051627eeac760e11b81523360048201526001600160401b0382811660248301819052602095919391929091907f000000000000000000000000437f681fc3c71c21eb3033a14b7590b4cdca329b6001600160a01b0316908781604481855afa90811561043e579087918691610409575b50106103f757803b156103f357604051637a94c56560e11b81523360048201526001600160401b0383166024820152604481018790529084908290606490829084905af180156103e8579084916103d0575b505061032990611b34565b60405163a9059cbb60e01b86820152336024820152604480820186905281529260808401908111848210176103bc57600193610388916040527f000000000000000000000000b2f776e9c1c926c4b2e54182fac058da9af0b6a5611bd0565b6040518481527f53307341a0e8c285b0e4488d042d0ab431a1becc0771bbdb906b57a2b4087594863392a355604051908152f35b634e487b7160e01b5f52604160045260245ffd5b6103d990611813565b6103e457825f61031e565b8280fd5b6040513d86823e3d90fd5b8380fd5b604051630e13fa7160e31b8152600490fd5b809250898092503d8311610437575b6104228183611826565b81010312610433578690515f6102cc565b5f80fd5b503d610418565b6040513d87823e3d90fd5b6040516353193d3760e01b8152600490fd5b60405163dee12e0360e01b8152600490fd5b503461021d57602036600319011261021d576104876117b9565b61048f611a69565b610497611a3d565b6001600160a01b031680156104f15760207fcb7ef3e545f5cdb893f5c568ba710fe08f336375a2d9fd66e161033f8fc09ef39160045490806001600160601b0360a01b831617600455846040519216178152a16001815580f35b60405163d92e233d60e01b8152600490fd5b503461021d57602036600319011261021d5760e06105276105226117cf565b6119ca565b94604094919493929351961515875215156020870152151560408601526060850152608084015260a083015260c0820152f35b503461021d57602036600319011261021d5760043565ffffffffffff81168091036105ef578160409160e093526008602052208054906001810154906002810154600382015491600460018060a01b03910154169260ff604051956001600160401b0381168752818160401c161515602088015260481c16151560408601526060850152608084015260a083015260c0820152f35b5080fd5b503461021d57604036600319011261021d5761060d6117cf565b6001600160401b0360243591610621611a69565b610629611a3d565b1690818352600960205265ffffffffffff6040842054169081156106c65781845260086020526040842060ff815460401c166106b457600381015482106106a257817fbd8c81882ee7e90afad11c4f70486f25c0bc860285d7ba8fd3ee1fde95a607f49260026020930155604051908152a36001815580f35b604051631c362e1160e31b8152600490fd5b604051636d70cc8960e11b8152600490fd5b60405163eed34f0760e01b8152600490fd5b503461021d578060031936011261021d576020600254604051908152f35b503461021d57602036600319011261021d576001600160401b036107186117cf565b610720611a3d565b16808252600960205265ffffffffffff60408320541680156106c657808352600860205260408320805460ff8160401c166106b45760ff8160481c1661079c5760ff60481b191669010000000000000000001790557f023dff3dced99e172de9866eb8fbddaf670d6096c898c86020d86d28c728e6588380a380f35b60405163acf542ab60e01b8152600490fd5b503461021d57602036600319011261021d576001600160401b036107d06117cf565b6107d8611a3d565b16808252600960205265ffffffffffff60408320541680156106c657808352600860205260408320805460ff8160401c166106b45760ff8160481c16156108495760ff60481b191690557fe78dd8e5fb9202ec320b9ef5cc26cc642ee92cafa66816332b1d0b79b39baf618380a380f35b604051632934c26360e21b8152600490fd5b503461021d578060031936011261021d5760206040516103e88152f35b503461021d57602036600319011261021d5760406108976004356119a1565b82519182526020820152f35b503461021d57606036600319011261021d576108bd6117cf565b602435916044356001600160a01b03818116939092918490036104335761092f906108e6611a69565b6108ee611a3d565b604084600354168560055416906006549183518096819482936357732dbb60e11b84526004840160209093929193604081019460018060a01b031681520152565b03915afa908115610c0f5783928492610bdb575b506001600160401b03808092169316831115610bc9576109628261187f565b81804216911610610bb7576040519163bd85b03960e01b835283600484015260209788846024818a7f000000000000000000000000437f681fc3c71c21eb3033a14b7590b4cdca329b165afa938415610bac578694610b7d575b5083811115610b6b578486526009895265ffffffffffff97886040882054168015159081610b51575b50610b3f57600154898160a81c16998a14610b2b5765ffffffffffff60a81b191660018a810160a81b65ffffffffffff60a81b169190911790556040519760e08901948086118a8710176103bc576001998b97858e97888b6004968f8f906040917fc35303cbdb16af3e918634bdda99307f23696c65fba6f7139e645fe22eb56fe29f835289526008858a0195828752838b01958387528560608d019916895260808c01998a5260a08c019a8b5260c08c019e8f528352522096511669ff00000000000000000068ff000000000000000088549451151560401b169251151560481b169269ffffffffffffffffffff19161717178455518d840155516002830155516003820155019151166001600160601b0360a01b82541617905584865260098252604086208465ffffffffffff19825416179055604051908152a355604051908152f35b634e487b7160e01b88526011600452602488fd5b604051632e6d917160e21b8152600490fd5b9050875260088a5260ff604088205460401c16155f6109e5565b604051637fb1277b60e01b8152600490fd5b9093508881813d8311610ba5575b610b958183611826565b810103126104335751925f6109bc565b503d610b8b565b6040513d88823e3d90fd5b60405163a527363160e01b8152600490fd5b604051630bc672fd60e21b8152600490fd5b909250610c00915060403d604011610c08575b610bf88183611826565b81019061185b565b90915f610943565b503d610bee565b6040513d85823e3d90fd5b503461021d578060031936011261021d576001546040516001600160a01b039091168152602090f35b503461021d578060031936011261021d5760206040516127108152f35b503461021d578060031936011261021d57610c79611a3d565b610c81611a8a565b6001805460ff60a01b1916600160a01b1790556040513381527f62e78cea01bee320cd4e420270b5ea74000d11b0c9f74754ebdbfc544b05a25890602090a180f35b503461021d57602036600319011261021d576020610ce7610ce26117cf565b611898565b6040519015158152f35b503461021d578060031936011261021d576003546040516001600160a01b039091168152602090f35b503461021d57602036600319011261021d57610d346117b9565b610d3c611a3d565b600380546001600160a01b0319166001600160a01b039290921691821790557f3df77beb5db05fcdd70a30fc8adf3f83f9501b68579455adbd100b81809403948280a280f35b503461021d576020908160031936011261021d57610d9e6117cf565b90610da7611a69565b6001600160401b039182168082526007845260408220546001600160a01b03908116610ed0576040517f000000000000000000000000437f681fc3c71c21eb3033a14b7590b4cdca329b821694610dbc80830191821183831017610ebc576040918391611c2b8339878152858982015203019084f08015610c0f571692803b156103e457828091602460405180948193635b52ebef60e11b83528960048401525af18015610c0f57610ea8575b50908160019282526007855260408220846001600160601b0360a01b8254161790557f5ca11f4052e8cadbe59c1a0cd3acc22f4977f49509b0f7cd04d2dbb19aa5940c85604051868152a255604051908152f35b610eb28391611813565b6105ef575f610e54565b634e487b7160e01b86526041600452602486fd5b60405163a6ef0ba160e01b8152600490fd5b503461021d578060031936011261021d57610efb611a3d565b600180546001600160a01b031981169091555f906001600160a01b03167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08280a380f35b503461043357606036600319011261043357610f596117cf565b60243590610f65611a69565b610f6d611a8a565b6001600160401b0381165f52600960205265ffffffffffff60405f20541680156106c6575f52600860205260405f2091825460ff8160401c166106b45760481c60ff1661145857801561144657610fd0610fc960025483611aab565b80926117e5565b9260038101805492610fe28685611806565b9360028401548095116114345760048401545f956001600160a01b039091169182611331575b505050611016868354611806565b9182815560443585106112fb578415159285846112e8575b505050806112aa575b507f000000000000000000000000b2f776e9c1c926c4b2e54182fac058da9af0b6a59061106686303385611ada565b61113c575b50507f000000000000000000000000437f681fc3c71c21eb3033a14b7590b4cdca329b6001600160a01b03169050803b156103f357604051630ab714fb60e11b81523360048201526001600160401b0383166024820152604481018490529084908290606490829084905af180156103e857611128575b506020926001916001600160401b036040519185835216907f4c209b5fc8ad50758f13e2e1088ba56a560dff690a1c6fef26394f4c03821c4f863392a355604051908152f35b6111328491611813565b6103e4575f6110e2565b60048201546001600160a01b0316803b15610433575f80916024604051809481936395e1d97760e01b83528960048401525af1801561129f5761128c575b508261119591309060018060a01b0360048601541690611ada565b600481015485906001600160a01b03908116907f000000000000000000000000437f681fc3c71c21eb3033a14b7590b4cdca329b16803b156103e457604051630ab714fb60e11b81526001600160a01b039290921660048301526001600160401b03861660248301526044820185905282908290606490829084905af1801561128157611269575b5050600460018060a01b03910154166040519182527fef970e06880f8548844c9f7420575bbf879f646b6f7b8f4c241ca6b7678e4eb060206001600160401b03851693a35f808061106b565b61127290611813565b61127d57845f61121d565b8480fd5b6040513d84823e3d90fd5b611297919650611813565b5f948261117a565b6040513d5f823e3d90fd5b6004546112e291906001600160a01b0316337f000000000000000000000000b2f776e9c1c926c4b2e54182fac058da9af0b6a5611ada565b5f611037565b6112f191611806565b90555f808561102e565b60405162461bcd60e51b815260206004820152600e60248201526d5768616c6520736c69707061676560901b6044820152606490fd5b604051637cb5dbbd60e11b815290602082600481875afa801561129f578a925f916113f4575b50611363575b50611008565b5f9497509161137861137e9260209594611806565b906117e5565b8089106113ed575b6024906040519485938492630d384a6f60e11b845260048401525af190811561129f575f916113bb575b50925f80878161135d565b90506020813d6020116113e5575b816113d660209383611826565b8101031261043357515f6113b0565b3d91506113c9565b5087611386565b919250506020813d60201161142c575b8161141160209383611826565b8101031261043357519081151582036104335789915f611357565b3d9150611404565b604051639670687960e01b8152600490fd5b60405163a776bb4d60e01b8152600490fd5b604051630b4cba3160e31b8152600490fd5b3461043357602036600319011261043357600435611486611a69565b61148e611a3d565b6103e881116114cb576020817e172ddfc5ae88d08b3de01a5a187667c37a5a53989e8c175055cb6c993792a792600255604051908152a160015f55005b60405163f4df6ae560e01b8152600490fd5b34610433575f366003190112610433576004546040516001600160a01b039091168152602090f35b34610433575f36600319011261043357602065ffffffffffff60015460a81c16604051908152f35b34610433575f36600319011261043357602060ff60015460a01c166040519015158152f35b346104335760203660031901126104335760043561156e611a3d565b806006557f54ef723920b7713f0db1bd7930ad9789cc963b5df84af3396860d2cd45d0ec815f80a2005b34610433575f366003190112610433576020600654604051908152f35b34610433576020366003190112610433576001600160401b036115d66117cf565b165f526009602052602065ffffffffffff60405f205416604051908152f35b34610433576020366003190112610433576001600160401b036116166117cf565b165f526007602052602060018060a01b0360405f205416604051908152f35b34610433575f3660031901126104335761164d611a3d565b60015460ff8160a01c16156116945760ff60a01b19166001556040513381527f5db9ee0a495bf2e6ff9c91a7834c1ba4fdd244a5e8aa4e537bd38aeae4b073aa90602090a1005b604051638dfc202b60e01b8152600490fd5b34610433575f366003190112610433576040517f000000000000000000000000437f681fc3c71c21eb3033a14b7590b4cdca329b6001600160a01b03168152602090f35b34610433575f366003190112610433576040517f000000000000000000000000b2f776e9c1c926c4b2e54182fac058da9af0b6a56001600160a01b03168152602090f35b34610433576020366003190112610433576117476117b9565b61174f611a3d565b6001600160a01b031680156104f157600580546001600160a01b031916821790557fba2b62c9461657dff915dd9c97496dc57d1ff2cf348b2b947cc5e9e72947b1425f80a2005b34610433575f366003190112610433576005546001600160a01b03168152602090f35b600435906001600160a01b038216820361043357565b600435906001600160401b038216820361043357565b919082039182116117f257565b634e487b7160e01b5f52601160045260245ffd5b919082018092116117f257565b6001600160401b0381116103bc57604052565b90601f801991011681019081106001600160401b038211176103bc57604052565b51906001600160401b038216820361043357565b91908260409103126104335761187c602061187584611847565b9301611847565b90565b90610e106001600160401b03809316019182116117f257565b6001600160401b0380911690815f52600960205260409065ffffffffffff825f2054165f526008602052815f209260ff8454841c166119985760035460055460065485516357732dbb60e11b81526001600160a01b039283166004820152602481019190915291859183916044918391165afa93841561198f575f915f9561196e575b506119258561187f565b8480421691161061195e575082161015928361194c575b505050611947575f90565b600190565b600101549116101590505f808061193c565b5163a527363160e01b8152600490fd5b9080955061198892503d8611610c0857610bf88183611826565b935f61191b565b513d5f823e3d90fd5b50505050600190565b9060025480155f146119b257505f90565b6119bf6119c69184611aab565b80936117e5565b9190565b6001600160401b03165f52600960205265ffffffffffff60405f2054168015611a2c575f52600860205260405f2080549060018101549060036002820154910154611a1581836117e5565b60019560ff808760401c169660481c169493929190565b505f905f905f905f905f905f905f90565b6001546001600160a01b03163303611a5157565b60405163118cdaa760e01b8152336004820152602490fd5b60025f5414611a785760025f55565b604051633ee5aeb560e01b8152600490fd5b60ff60015460a01c16611a9957565b60405163d93c066560e01b8152600490fd5b81810291612710918291818504149015170215611acd57808204910615150190565b63ad251c275f526004601cfd5b6040516323b872dd60e01b60208201526001600160a01b03928316602482015292909116604483015260648083019390935291815260a08101918183106001600160401b038411176103bc57611b3292604052611bd0565b565b6001600160401b0380911690815f52600960205265ffffffffffff60405f20541690815f52600860205260405f209081549060ff8260401c16611bc957811615611bb75768ff00000000000000001916680100000000000000001790557ff93f4d3a19af6703dc8c284b246c3681ae2e0087236087d929b85670589576d35f80a3565b604051631b086e7b60e11b8152600490fd5b5050505050565b905f602091828151910182855af11561129f575f513d611c2157506001600160a01b0381163b155b611bff5750565b604051635274afe760e01b81526001600160a01b039091166004820152602490fd5b60011415611bf856fe60c0604090808252346103e8578181610dbc803803809161002082856103ec565b8339810103126103e85780516001600160a01b039190828116908190036103e8576020918201516001600160401b039283821692918390036103e85781156103e8575f92826080528060a052865193848094622b600360e21b82526004938483015260249586915afa9384156103de575f946103c2575b508351958587116103b0576001968754958887811c971680156103a6575b85881014610394578190601f97888111610346575b5085908883116001146102e7575f926102dc575b50505f19600383901b1c191690881b1787555b60805116925f60a051828a5180978193634e41a1fb60e01b8352878301525afa9384156102d2575f946102ae575b50835195861161029c57600254918783811c93168015610292575b8484101461028157505083811161023d575b50809284116001146101d957509282939183925f946101ce575b50501b915f199060031b1c1916176002555b51610931908161048b8239608051818181610146015281816103970152818161041b015281816104d10152610671015260a05181818160fb015281816101920152818161036a0152818161052001526106430152f35b015192505f80610166565b919083601f19811660025f52845f20945f905b88838310610223575050501061020b575b505050811b01600255610178565b01515f1960f88460031b161c191690555f80806101fd565b8587015188559096019594850194879350908101906101ec565b60025f52815f208480870160051c820192848810610278575b0160051c019086905b82811061026d57505061014c565b5f815501869061025f565b92508192610256565b602290634e487b7160e01b5f52525ffd5b92607f169261013a565b634e487b7160e01b5f90815260418352fd5b6102cb9194503d805f833e6102c381836103ec565b810190610423565b925f61011f565b88513d5f823e3d90fd5b015190505f806100de565b908a9350601f19831691845f52875f20925f5b898282106103305750508411610318575b505050811b0187556100f1565b01515f1960f88460031b161c191690555f808061030b565b8385015186558e979095019493840193016102fa565b909150895f52855f208880850160051c82019288861061038b575b918c91869594930160051c01915b82811061037d5750506100ca565b5f81558594508c910161036f565b92508192610361565b85602285634e487b7160e01b5f52525ffd5b96607f16966100b5565b83604183634e487b7160e01b5f52525ffd5b6103d79194503d805f833e6102c381836103ec565b925f610097565b87513d5f823e3d90fd5b5f80fd5b601f909101601f19168101906001600160401b0382119082101761040f57604052565b634e487b7160e01b5f52604160045260245ffd5b602080828403126103e85781516001600160401b03928382116103e857019183601f840112156103e857825190811161040f576040519361046d601f8301601f19168401866103ec565b8185528282850101116103e85780825f94018386015e830101529056fe6080604090808252600480361015610015575f80fd5b5f3560e01c91826306fdde031461079e57508163095ea7b3146106f157816318160ddd1461062457816323b872dd14610465578163313ce5671461044a5781633a59aac71461040757816370a082311461032d57816395d89b411461022b578163a9059cbb1461011e57508063ad8f5008146100e45763dd62ed3e14610099575f80fd5b346100e057806003193601126100e0576020906100b4610885565b6100bc61089b565b9060018060a01b038091165f525f8452825f2091165f528252805f20549051908152f35b5f80fd5b50346100e0575f3660031901126100e057602090517f00000000000000000000000000000000000000000000000000000000000000008152f35b82346100e057806003193601126100e057610137610885565b602435906001600160a01b03907f00000000000000000000000000000000000000000000000000000000000000008216803b156100e05784516361f3f6e960e01b8152339681019687526001600160a01b03831660208801527f0000000000000000000000000000000000000000000000000000000000000000604088015260608701859052955f91879182908490829060800103925af194851561022157602095610212575b50835192835216907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef843392a35160018152f35b61021b906108b1565b856101de565b84513d5f823e3d90fd5b82346100e0575f3660031901126100e0578051905f9260025460018160011c91600181168015610323575b602094858510821461031057508387529081156102f05750600114610296575b505050610288826102929403836108d9565b519182918261085b565b0390f35b60025f9081529295507f405787fa12a823e0f2b7631cc41b3ba8828b3321ca811111fa75cd3aa3bb5ace5b8284106102dd5750505082610292946102889282010194610276565b80548685018801529286019281016102c1565b60ff1916868501525050151560051b830101925061028882610292610276565b602290634e487b7160e01b5f525260245ffd5b92607f1692610256565b9050346100e057602091826003193601126100e0578261034b610885565b8251627eeac760e11b81526001600160a01b03918216948101949094527f00000000000000000000000000000000000000000000000000000000000000006024850152839060449082907f0000000000000000000000000000000000000000000000000000000000000000165afa9182156103fd575f926103ce575b5051908152f35b9091508281813d83116103f6575b6103e681836108d9565b810103126100e05751905f6103c7565b503d6103dc565b50513d5f823e3d90fd5b82346100e0575f3660031901126100e057517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b82346100e0575f3660031901126100e0576020905160128152f35b82346100e05760603660031901126100e05761047f610885565b9161048861089b565b906044359160018060a01b039081861692835f526020965f8852865f20335f52885285875f2054106105f057845f525f8852865f20335f5288525f19875f2054036105b9575b837f00000000000000000000000000000000000000000000000000000000000000001691823b156100e05787516361f3f6e960e01b81526001600160a01b0392831691810191825291841660208201527f000000000000000000000000000000000000000000000000000000000000000060408201526060810187905290915f9183919082908490829060800103925af180156105af57917fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef939188936105a0575b5086519586521693a35160018152f35b6105a9906108b1565b88610590565b86513d5f823e3d90fd5b845f525f8852865f20335f528852865f208054908782039182116105dd57556104ce565b601184634e487b7160e01b5f525260245ffd5b865162461bcd60e51b8152808301899052600e60248201526d1b9bdd08185d5d1a1bdc9a5e995960921b6044820152606490fd5b82346100e0575f3660031901126100e057805163bd85b03960e01b81527f0000000000000000000000000000000000000000000000000000000000000000928101929092526020826024817f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03165afa9081156106e8575f916106b3575b6020925051908152f35b90506020823d6020116106e0575b816106ce602093836108d9565b810103126100e05760209151906106a9565b3d91506106c1565b513d5f823e3d90fd5b82346100e057806003193601126100e05761070a610885565b6001600160a01b031660243581156107645760209350335f525f8452825f20825f52845280835f205582519081527f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925843392a35160018152f35b825162461bcd60e51b81526020818601526014602482015273617070726f7665207a65726f206164647265737360601b6044820152606490fd5b83346100e0575f3660031901126100e0575f9260018054908160011c91600181168015610851575b602094858510821461031057508387529081156102f057506001146107f757505050610288826102929403836108d9565b60015f9081529295507fb10e2d527612073b26eecdfd717e6a320cf44b4afac2b0732d9fcbe2b7fa0cf65b82841061083e5750505082610292946102889282010194610276565b8054868501880152928601928101610822565b92607f16926107c6565b602060409281835280519182918282860152018484015e5f828201840152601f01601f1916010190565b600435906001600160a01b03821682036100e057565b602435906001600160a01b03821682036100e057565b67ffffffffffffffff81116108c557604052565b634e487b7160e01b5f52604160045260245ffd5b90601f8019910116810190811067ffffffffffffffff8211176108c55760405256fea26469706673582212207f3711ca38e587c8d8e1da805191c92c4123070a29e49baa108d17ee3d3c52d964736f6c63430008190033a2646970667358221220454358eb0b9f92eca5fb7dc710ed2d5dd0cb3de3c4e7836139038914c9f9042d64736f6c63430008190033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

000000000000000000000000b2f776e9c1c926c4b2e54182fac058da9af0b6a5000000000000000000000000d5f76a363135a0781295043241f18496daa31e3d0000000000000000000000008727b25ece0098c4c5571fbea30257f527bc964500000000000000000000000097de4fa69e79bd9b812111f12f38767ada36e58e77e9b912bc18f8931d6bf02e4a6c8920848a4de015bbe080f36f82639c8db295

-----Decoded View---------------
Arg [0] : asset_ (address): 0xb2F776e9c1C926C4b2e54182Fac058dA9Af0B6A5
Arg [1] : oracle_ (address): 0xD5F76a363135A0781295043241f18496dAa31E3d
Arg [2] : treasury_ (address): 0x8727B25eCe0098c4C5571FBea30257F527Bc9645
Arg [3] : oracleSender_ (address): 0x97De4fa69E79Bd9b812111f12F38767AdA36E58E
Arg [4] : oracleKey_ (bytes32): 0x77e9b912bc18f8931d6bf02e4a6c8920848a4de015bbe080f36f82639c8db295

-----Encoded View---------------
5 Constructor Arguments found :
Arg [0] : 000000000000000000000000b2f776e9c1c926c4b2e54182fac058da9af0b6a5
Arg [1] : 000000000000000000000000d5f76a363135a0781295043241f18496daa31e3d
Arg [2] : 0000000000000000000000008727b25ece0098c4c5571fbea30257f527bc9645
Arg [3] : 00000000000000000000000097de4fa69e79bd9b812111f12f38767ada36e58e
Arg [4] : 77e9b912bc18f8931d6bf02e4a6c8920848a4de015bbe080f36f82639c8db295


Block Transaction Gas Used Reward
view all blocks produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.