BERA Price: $3.61 (-1.95%)

Contract

0x77E0f495634f416251A72626ab45879e2B94274a

Overview

BERA Balance

Berachain LogoBerachain LogoBerachain Logo0 BERA

BERA Value

$0.00

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To

There are no matching entries

Please try again later

Parent Transaction Hash Block From To
View All Internal Transactions
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
CliqueDistributorManager

Compiler Version
v0.8.25+commit.b61c2a91

Optimization Enabled:
Yes with 200 runs

Other Settings:
cancun EvmVersion
File 1 of 20 : CliqueDistributorManager.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.25;

import "solady/utils/MerkleProofLib.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "solady/utils/FixedPointMathLib.sol";
import {UUPSUpgradeable} from "solady/utils/UUPSUpgradeable.sol";
import {Initializable} from "solady/utils/Initializable.sol";
import {OwnableRoles} from "solady/auth/OwnableRoles.sol";
import {EIP712} from "solady/utils/EIP712.sol";
import {Distributor} from "./sub/Distributor.sol";
import {ECDSA} from "solady/utils/ECDSA.sol";
import {VestedDistributor} from "./sub/VestedDistributor.sol";

contract CliqueDistributorManager is Initializable, OwnableRoles, UUPSUpgradeable, EIP712 {
    using SafeERC20 for IERC20;
    using FixedPointMathLib for uint256;

    error DeadlineReached();

    event DistributorCreated(address indexed _token, address indexed distributor, bytes signature);

    uint256 public constant ADMIN = _ROLE_0;
    uint256 public constant AIDROP_MANAGER = _ROLE_1;

    function initialize() external initializer {
        _initializeOwner(msg.sender);
    }

    function createDistributor(
        address _token,
        address _vault,
        address _signer,
        uint256 _fee,
        uint256 _deadline,
        bytes calldata _signature
    ) external returns (address) {
        if (block.timestamp > _deadline) {
            revert DeadlineReached();
        }
        bytes32 digest = _hashTypedData(
            keccak256(
                abi.encode(
                    keccak256("NewDistributor(address token,address vault,address signer,uint256 fee,uint256 deadline)"),
                    _token,
                    _vault,
                    _signer,
                    _fee,
                    _deadline
                )
            )
        );
        address recovered = ECDSA.recover(digest, _signature);

        if (rolesOf(recovered) & AIDROP_MANAGER == 0) {
            revert Unauthorized();
        }

        Distributor _distributor = new Distributor(_signer, _token, msg.sender, _vault);
        emit DistributorCreated(_token, address(_distributor), _signature);
        return address(_distributor);
    }

    function createVestedDistributor(
        address _token,
        address _vault,
        address _signer,
        address _lock,
        uint256 _fee,
        uint256 _deadline,
        bytes calldata _signature
    ) external returns (address) {
        if (block.timestamp > _deadline) {
            revert DeadlineReached();
        }
        bytes32 digest = _hashTypedData(
            keccak256(
                abi.encode(
                    keccak256(
                        "NewVestedDistributor(address token,address vault,address signer,address lock,uint256 fee,uint256 deadline)"
                    ),
                    _token,
                    _vault,
                    _signer,
                    _lock,
                    _fee,
                    _deadline
                )
            )
        );
        address recovered = ECDSA.recover(digest, _signature);
        if (rolesOf(recovered) & AIDROP_MANAGER == 0) {
            revert Unauthorized();
        }
        VestedDistributor _distributor = new VestedDistributor(_signer, _token, msg.sender, _vault, _lock);
        emit DistributorCreated(_token, address(_distributor), _signature);
        return address(_distributor);
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                     Airdrop Management                     */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @notice Set the fee for the distributor
    /// @param _distributor address of the distributor
    /// @param _fee fee in percentage
    /// @param _deadline deadline of the transaction
    /// @param _signature signature of the transaction
    function setFee(address _distributor, uint256 _fee, uint256 _deadline, bytes calldata _signature) external {
        if (rolesOf(msg.sender) & AIDROP_MANAGER == 0) {
            if (block.timestamp > _deadline) {
                revert DeadlineReached();
            }
            bytes32 digest = _hashTypedData(
                keccak256(abi.encode(keccak256("SetFee(address distributor, uint256 fee)"), _distributor, _fee))
            );
            address recovered = ECDSA.recover(digest, _signature);
            if (rolesOf(recovered) & AIDROP_MANAGER == 0) {
                revert Unauthorized();
            }
        }

        // Distributor _distributorContract = Distributor(_distributor);
        // _distributorContract.setFee(_fee);
    }

    /// @notice Withdraw the fee from the distributor
    /// @param _distributor address of the distributor
    /// @param _recipient address of the recipient
    /// @param _deadline deadline of the transaction
    /// @param _signature signature of the transaction
    function withdrawFee(address _distributor, address _recipient, uint256 _deadline, bytes calldata _signature)
        external
    {
        if (rolesOf(msg.sender) & AIDROP_MANAGER == 0) {
            if (block.timestamp > _deadline) {
                revert DeadlineReached();
            }
            bytes32 digest = _hashTypedData(
                keccak256(
                    abi.encode(
                        keccak256("WithdrawFee(address distributor, address recipient)"), _distributor, _recipient
                    )
                )
            );
            address recovered = ECDSA.recover(digest, _signature);
            if (rolesOf(recovered) & AIDROP_MANAGER == 0) {
                revert Unauthorized();
            }
        }
        Distributor _distributorContract = Distributor(_distributor);
        _distributorContract.withdrawFee(_recipient);
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                      Upgrade & Metadata                    */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    function _authorizeUpgrade(address newImplementation) internal override onlyOwnerOrRoles(ADMIN) {}

    function _domainNameAndVersionMayChange() internal pure override returns (bool result) {
        return true;
    }

    function _domainNameAndVersion()
        internal
        view
        virtual
        override
        returns (string memory name, string memory version)
    {
        return ("CliqueDistributorManager", "1");
    }
}

File 2 of 20 : MerkleProofLib.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Gas optimized verification of proof of inclusion for a leaf in a Merkle tree.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/MerkleProofLib.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/MerkleProofLib.sol)
/// @author Modified from OpenZeppelin (https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/cryptography/MerkleProof.sol)
library MerkleProofLib {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*            MERKLE PROOF VERIFICATION OPERATIONS            */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns whether `leaf` exists in the Merkle tree with `root`, given `proof`.
    function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf)
        internal
        pure
        returns (bool isValid)
    {
        /// @solidity memory-safe-assembly
        assembly {
            if mload(proof) {
                // Initialize `offset` to the offset of `proof` elements in memory.
                let offset := add(proof, 0x20)
                // Left shift by 5 is equivalent to multiplying by 0x20.
                let end := add(offset, shl(5, mload(proof)))
                // Iterate over proof elements to compute root hash.
                for {} 1 {} {
                    // Slot of `leaf` in scratch space.
                    // If the condition is true: 0x20, otherwise: 0x00.
                    let scratch := shl(5, gt(leaf, mload(offset)))
                    // Store elements to hash contiguously in scratch space.
                    // Scratch space is 64 bytes (0x00 - 0x3f) and both elements are 32 bytes.
                    mstore(scratch, leaf)
                    mstore(xor(scratch, 0x20), mload(offset))
                    // Reuse `leaf` to store the hash to reduce stack operations.
                    leaf := keccak256(0x00, 0x40)
                    offset := add(offset, 0x20)
                    if iszero(lt(offset, end)) { break }
                }
            }
            isValid := eq(leaf, root)
        }
    }

    /// @dev Returns whether `leaf` exists in the Merkle tree with `root`, given `proof`.
    function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf)
        internal
        pure
        returns (bool isValid)
    {
        /// @solidity memory-safe-assembly
        assembly {
            if proof.length {
                // Left shift by 5 is equivalent to multiplying by 0x20.
                let end := add(proof.offset, shl(5, proof.length))
                // Initialize `offset` to the offset of `proof` in the calldata.
                let offset := proof.offset
                // Iterate over proof elements to compute root hash.
                for {} 1 {} {
                    // Slot of `leaf` in scratch space.
                    // If the condition is true: 0x20, otherwise: 0x00.
                    let scratch := shl(5, gt(leaf, calldataload(offset)))
                    // Store elements to hash contiguously in scratch space.
                    // Scratch space is 64 bytes (0x00 - 0x3f) and both elements are 32 bytes.
                    mstore(scratch, leaf)
                    mstore(xor(scratch, 0x20), calldataload(offset))
                    // Reuse `leaf` to store the hash to reduce stack operations.
                    leaf := keccak256(0x00, 0x40)
                    offset := add(offset, 0x20)
                    if iszero(lt(offset, end)) { break }
                }
            }
            isValid := eq(leaf, root)
        }
    }

    /// @dev Returns whether all `leaves` exist in the Merkle tree with `root`,
    /// given `proof` and `flags`.
    ///
    /// Note:
    /// - Breaking the invariant `flags.length == (leaves.length - 1) + proof.length`
    ///   will always return false.
    /// - The sum of the lengths of `proof` and `leaves` must never overflow.
    /// - Any non-zero word in the `flags` array is treated as true.
    /// - The memory offset of `proof` must be non-zero
    ///   (i.e. `proof` is not pointing to the scratch space).
    function verifyMultiProof(
        bytes32[] memory proof,
        bytes32 root,
        bytes32[] memory leaves,
        bool[] memory flags
    ) internal pure returns (bool isValid) {
        // Rebuilds the root by consuming and producing values on a queue.
        // The queue starts with the `leaves` array, and goes into a `hashes` array.
        // After the process, the last element on the queue is verified
        // to be equal to the `root`.
        //
        // The `flags` array denotes whether the sibling
        // should be popped from the queue (`flag == true`), or
        // should be popped from the `proof` (`flag == false`).
        /// @solidity memory-safe-assembly
        assembly {
            // Cache the lengths of the arrays.
            let leavesLength := mload(leaves)
            let proofLength := mload(proof)
            let flagsLength := mload(flags)

            // Advance the pointers of the arrays to point to the data.
            leaves := add(0x20, leaves)
            proof := add(0x20, proof)
            flags := add(0x20, flags)

            // If the number of flags is correct.
            for {} eq(add(leavesLength, proofLength), add(flagsLength, 1)) {} {
                // For the case where `proof.length + leaves.length == 1`.
                if iszero(flagsLength) {
                    // `isValid = (proof.length == 1 ? proof[0] : leaves[0]) == root`.
                    isValid := eq(mload(xor(leaves, mul(xor(proof, leaves), proofLength))), root)
                    break
                }

                // The required final proof offset if `flagsLength` is not zero, otherwise zero.
                let proofEnd := add(proof, shl(5, proofLength))
                // We can use the free memory space for the queue.
                // We don't need to allocate, since the queue is temporary.
                let hashesFront := mload(0x40)
                // Copy the leaves into the hashes.
                // Sometimes, a little memory expansion costs less than branching.
                // Should cost less, even with a high free memory offset of 0x7d00.
                leavesLength := shl(5, leavesLength)
                for { let i := 0 } iszero(eq(i, leavesLength)) { i := add(i, 0x20) } {
                    mstore(add(hashesFront, i), mload(add(leaves, i)))
                }
                // Compute the back of the hashes.
                let hashesBack := add(hashesFront, leavesLength)
                // This is the end of the memory for the queue.
                // We recycle `flagsLength` to save on stack variables (sometimes save gas).
                flagsLength := add(hashesBack, shl(5, flagsLength))

                for {} 1 {} {
                    // Pop from `hashes`.
                    let a := mload(hashesFront)
                    // Pop from `hashes`.
                    let b := mload(add(hashesFront, 0x20))
                    hashesFront := add(hashesFront, 0x40)

                    // If the flag is false, load the next proof,
                    // else, pops from the queue.
                    if iszero(mload(flags)) {
                        // Loads the next proof.
                        b := mload(proof)
                        proof := add(proof, 0x20)
                        // Unpop from `hashes`.
                        hashesFront := sub(hashesFront, 0x20)
                    }

                    // Advance to the next flag.
                    flags := add(flags, 0x20)

                    // Slot of `a` in scratch space.
                    // If the condition is true: 0x20, otherwise: 0x00.
                    let scratch := shl(5, gt(a, b))
                    // Hash the scratch space and push the result onto the queue.
                    mstore(scratch, a)
                    mstore(xor(scratch, 0x20), b)
                    mstore(hashesBack, keccak256(0x00, 0x40))
                    hashesBack := add(hashesBack, 0x20)
                    if iszero(lt(hashesBack, flagsLength)) { break }
                }
                isValid :=
                    and(
                        // Checks if the last value in the queue is same as the root.
                        eq(mload(sub(hashesBack, 0x20)), root),
                        // And whether all the proofs are used, if required.
                        eq(proofEnd, proof)
                    )
                break
            }
        }
    }

    /// @dev Returns whether all `leaves` exist in the Merkle tree with `root`,
    /// given `proof` and `flags`.
    ///
    /// Note:
    /// - Breaking the invariant `flags.length == (leaves.length - 1) + proof.length`
    ///   will always return false.
    /// - Any non-zero word in the `flags` array is treated as true.
    /// - The calldata offset of `proof` must be non-zero
    ///   (i.e. `proof` is from a regular Solidity function with a 4-byte selector).
    function verifyMultiProofCalldata(
        bytes32[] calldata proof,
        bytes32 root,
        bytes32[] calldata leaves,
        bool[] calldata flags
    ) internal pure returns (bool isValid) {
        // Rebuilds the root by consuming and producing values on a queue.
        // The queue starts with the `leaves` array, and goes into a `hashes` array.
        // After the process, the last element on the queue is verified
        // to be equal to the `root`.
        //
        // The `flags` array denotes whether the sibling
        // should be popped from the queue (`flag == true`), or
        // should be popped from the `proof` (`flag == false`).
        /// @solidity memory-safe-assembly
        assembly {
            // If the number of flags is correct.
            for {} eq(add(leaves.length, proof.length), add(flags.length, 1)) {} {
                // For the case where `proof.length + leaves.length == 1`.
                if iszero(flags.length) {
                    // `isValid = (proof.length == 1 ? proof[0] : leaves[0]) == root`.
                    // forgefmt: disable-next-item
                    isValid := eq(
                        calldataload(
                            xor(leaves.offset, mul(xor(proof.offset, leaves.offset), proof.length))
                        ),
                        root
                    )
                    break
                }

                // The required final proof offset if `flagsLength` is not zero, otherwise zero.
                let proofEnd := add(proof.offset, shl(5, proof.length))
                // We can use the free memory space for the queue.
                // We don't need to allocate, since the queue is temporary.
                let hashesFront := mload(0x40)
                // Copy the leaves into the hashes.
                // Sometimes, a little memory expansion costs less than branching.
                // Should cost less, even with a high free memory offset of 0x7d00.
                calldatacopy(hashesFront, leaves.offset, shl(5, leaves.length))
                // Compute the back of the hashes.
                let hashesBack := add(hashesFront, shl(5, leaves.length))
                // This is the end of the memory for the queue.
                // We recycle `flagsLength` to save on stack variables (sometimes save gas).
                flags.length := add(hashesBack, shl(5, flags.length))

                // We don't need to make a copy of `proof.offset` or `flags.offset`,
                // as they are pass-by-value (this trick may not always save gas).

                for {} 1 {} {
                    // Pop from `hashes`.
                    let a := mload(hashesFront)
                    // Pop from `hashes`.
                    let b := mload(add(hashesFront, 0x20))
                    hashesFront := add(hashesFront, 0x40)

                    // If the flag is false, load the next proof,
                    // else, pops from the queue.
                    if iszero(calldataload(flags.offset)) {
                        // Loads the next proof.
                        b := calldataload(proof.offset)
                        proof.offset := add(proof.offset, 0x20)
                        // Unpop from `hashes`.
                        hashesFront := sub(hashesFront, 0x20)
                    }

                    // Advance to the next flag offset.
                    flags.offset := add(flags.offset, 0x20)

                    // Slot of `a` in scratch space.
                    // If the condition is true: 0x20, otherwise: 0x00.
                    let scratch := shl(5, gt(a, b))
                    // Hash the scratch space and push the result onto the queue.
                    mstore(scratch, a)
                    mstore(xor(scratch, 0x20), b)
                    mstore(hashesBack, keccak256(0x00, 0x40))
                    hashesBack := add(hashesBack, 0x20)
                    if iszero(lt(hashesBack, flags.length)) { break }
                }
                isValid :=
                    and(
                        // Checks if the last value in the queue is same as the root.
                        eq(mload(sub(hashesBack, 0x20)), root),
                        // And whether all the proofs are used, if required.
                        eq(proofEnd, proof.offset)
                    )
                break
            }
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                   EMPTY CALLDATA HELPERS                   */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns an empty calldata bytes32 array.
    function emptyProof() internal pure returns (bytes32[] calldata proof) {
        /// @solidity memory-safe-assembly
        assembly {
            proof.length := 0
        }
    }

    /// @dev Returns an empty calldata bytes32 array.
    function emptyLeaves() internal pure returns (bytes32[] calldata leaves) {
        /// @solidity memory-safe-assembly
        assembly {
            leaves.length := 0
        }
    }

    /// @dev Returns an empty calldata bool array.
    function emptyFlags() internal pure returns (bool[] calldata flags) {
        /// @solidity memory-safe-assembly
        assembly {
            flags.length := 0
        }
    }
}

File 3 of 20 : SafeERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";
import {IERC1363} from "../../../interfaces/IERC1363.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC-20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    /**
     * @dev An operation with an ERC-20 token failed.
     */
    error SafeERC20FailedOperation(address token);

    /**
     * @dev Indicates a failed `decreaseAllowance` request.
     */
    error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     *
     * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
     * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
     * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
     * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        forceApprove(token, spender, oldAllowance + value);
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
     * value, non-reverting calls are assumed to be successful.
     *
     * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
     * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
     * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
     * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
        unchecked {
            uint256 currentAllowance = token.allowance(address(this), spender);
            if (currentAllowance < requestedDecrease) {
                revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
            }
            forceApprove(token, spender, currentAllowance - requestedDecrease);
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     *
     * NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function
     * only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being
     * set here.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            safeTransfer(token, to, value);
        } else if (!token.transferAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
     * has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferFromAndCallRelaxed(
        IERC1363 token,
        address from,
        address to,
        uint256 value,
        bytes memory data
    ) internal {
        if (to.code.length == 0) {
            safeTransferFrom(token, from, to, value);
        } else if (!token.transferFromAndCall(from, to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
     * Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
     * once without retrying, and relies on the returned value to be true.
     *
     * Reverts if the returned value is other than `true`.
     */
    function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            forceApprove(token, to, value);
        } else if (!token.approveAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements.
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        uint256 returnSize;
        uint256 returnValue;
        assembly ("memory-safe") {
            let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
            // bubble errors
            if iszero(success) {
                let ptr := mload(0x40)
                returndatacopy(ptr, 0, returndatasize())
                revert(ptr, returndatasize())
            }
            returnSize := returndatasize()
            returnValue := mload(0)
        }

        if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        bool success;
        uint256 returnSize;
        uint256 returnValue;
        assembly ("memory-safe") {
            success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
            returnSize := returndatasize()
            returnValue := mload(0)
        }
        return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1);
    }
}

File 4 of 20 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

File 5 of 20 : FixedPointMathLib.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Arithmetic library with operations for fixed-point numbers.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/FixedPointMathLib.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/FixedPointMathLib.sol)
library FixedPointMathLib {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       CUSTOM ERRORS                        */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The operation failed, as the output exceeds the maximum value of uint256.
    error ExpOverflow();

    /// @dev The operation failed, as the output exceeds the maximum value of uint256.
    error FactorialOverflow();

    /// @dev The operation failed, due to an overflow.
    error RPowOverflow();

    /// @dev The mantissa is too big to fit.
    error MantissaOverflow();

    /// @dev The operation failed, due to an multiplication overflow.
    error MulWadFailed();

    /// @dev The operation failed, due to an multiplication overflow.
    error SMulWadFailed();

    /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero.
    error DivWadFailed();

    /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero.
    error SDivWadFailed();

    /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero.
    error MulDivFailed();

    /// @dev The division failed, as the denominator is zero.
    error DivFailed();

    /// @dev The full precision multiply-divide operation failed, either due
    /// to the result being larger than 256 bits, or a division by a zero.
    error FullMulDivFailed();

    /// @dev The output is undefined, as the input is less-than-or-equal to zero.
    error LnWadUndefined();

    /// @dev The input outside the acceptable domain.
    error OutOfDomain();

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                         CONSTANTS                          */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The scalar of ETH and most ERC20s.
    uint256 internal constant WAD = 1e18;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*              SIMPLIFIED FIXED POINT OPERATIONS             */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Equivalent to `(x * y) / WAD` rounded down.
    function mulWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to `require(y == 0 || x <= type(uint256).max / y)`.
            if gt(x, div(not(0), y)) {
                if y {
                    mstore(0x00, 0xbac65e5b) // `MulWadFailed()`.
                    revert(0x1c, 0x04)
                }
            }
            z := div(mul(x, y), WAD)
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded down.
    function sMulWad(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, y)
            // Equivalent to `require((x == 0 || z / x == y) && !(x == -1 && y == type(int256).min))`.
            if iszero(gt(or(iszero(x), eq(sdiv(z, x), y)), lt(not(x), eq(y, shl(255, 1))))) {
                mstore(0x00, 0xedcd4dd4) // `SMulWadFailed()`.
                revert(0x1c, 0x04)
            }
            z := sdiv(z, WAD)
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded down, but without overflow checks.
    function rawMulWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := div(mul(x, y), WAD)
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded down, but without overflow checks.
    function rawSMulWad(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := sdiv(mul(x, y), WAD)
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded up.
    function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, y)
            // Equivalent to `require(y == 0 || x <= type(uint256).max / y)`.
            if iszero(eq(div(z, y), x)) {
                if y {
                    mstore(0x00, 0xbac65e5b) // `MulWadFailed()`.
                    revert(0x1c, 0x04)
                }
            }
            z := add(iszero(iszero(mod(z, WAD))), div(z, WAD))
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded up, but without overflow checks.
    function rawMulWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := add(iszero(iszero(mod(mul(x, y), WAD))), div(mul(x, y), WAD))
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded down.
    function divWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to `require(y != 0 && x <= type(uint256).max / WAD)`.
            if iszero(mul(y, lt(x, add(1, div(not(0), WAD))))) {
                mstore(0x00, 0x7c5f487d) // `DivWadFailed()`.
                revert(0x1c, 0x04)
            }
            z := div(mul(x, WAD), y)
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded down.
    function sDivWad(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, WAD)
            // Equivalent to `require(y != 0 && ((x * WAD) / WAD == x))`.
            if iszero(mul(y, eq(sdiv(z, WAD), x))) {
                mstore(0x00, 0x5c43740d) // `SDivWadFailed()`.
                revert(0x1c, 0x04)
            }
            z := sdiv(z, y)
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded down, but without overflow and divide by zero checks.
    function rawDivWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := div(mul(x, WAD), y)
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded down, but without overflow and divide by zero checks.
    function rawSDivWad(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := sdiv(mul(x, WAD), y)
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded up.
    function divWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to `require(y != 0 && x <= type(uint256).max / WAD)`.
            if iszero(mul(y, lt(x, add(1, div(not(0), WAD))))) {
                mstore(0x00, 0x7c5f487d) // `DivWadFailed()`.
                revert(0x1c, 0x04)
            }
            z := add(iszero(iszero(mod(mul(x, WAD), y))), div(mul(x, WAD), y))
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded up, but without overflow and divide by zero checks.
    function rawDivWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := add(iszero(iszero(mod(mul(x, WAD), y))), div(mul(x, WAD), y))
        }
    }

    /// @dev Equivalent to `x` to the power of `y`.
    /// because `x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)`.
    /// Note: This function is an approximation.
    function powWad(int256 x, int256 y) internal pure returns (int256) {
        // Using `ln(x)` means `x` must be greater than 0.
        return expWad((lnWad(x) * y) / int256(WAD));
    }

    /// @dev Returns `exp(x)`, denominated in `WAD`.
    /// Credit to Remco Bloemen under MIT license: https://2π.com/22/exp-ln
    /// Note: This function is an approximation. Monotonically increasing.
    function expWad(int256 x) internal pure returns (int256 r) {
        unchecked {
            // When the result is less than 0.5 we return zero.
            // This happens when `x <= (log(1e-18) * 1e18) ~ -4.15e19`.
            if (x <= -41446531673892822313) return r;

            /// @solidity memory-safe-assembly
            assembly {
                // When the result is greater than `(2**255 - 1) / 1e18` we can not represent it as
                // an int. This happens when `x >= floor(log((2**255 - 1) / 1e18) * 1e18) ≈ 135`.
                if iszero(slt(x, 135305999368893231589)) {
                    mstore(0x00, 0xa37bfec9) // `ExpOverflow()`.
                    revert(0x1c, 0x04)
                }
            }

            // `x` is now in the range `(-42, 136) * 1e18`. Convert to `(-42, 136) * 2**96`
            // for more intermediate precision and a binary basis. This base conversion
            // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
            x = (x << 78) / 5 ** 18;

            // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
            // of two such that exp(x) = exp(x') * 2**k, where k is an integer.
            // Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
            int256 k = ((x << 96) / 54916777467707473351141471128 + 2 ** 95) >> 96;
            x = x - k * 54916777467707473351141471128;

            // `k` is in the range `[-61, 195]`.

            // Evaluate using a (6, 7)-term rational approximation.
            // `p` is made monic, we'll multiply by a scale factor later.
            int256 y = x + 1346386616545796478920950773328;
            y = ((y * x) >> 96) + 57155421227552351082224309758442;
            int256 p = y + x - 94201549194550492254356042504812;
            p = ((p * y) >> 96) + 28719021644029726153956944680412240;
            p = p * x + (4385272521454847904659076985693276 << 96);

            // We leave `p` in `2**192` basis so we don't need to scale it back up for the division.
            int256 q = x - 2855989394907223263936484059900;
            q = ((q * x) >> 96) + 50020603652535783019961831881945;
            q = ((q * x) >> 96) - 533845033583426703283633433725380;
            q = ((q * x) >> 96) + 3604857256930695427073651918091429;
            q = ((q * x) >> 96) - 14423608567350463180887372962807573;
            q = ((q * x) >> 96) + 26449188498355588339934803723976023;

            /// @solidity memory-safe-assembly
            assembly {
                // Div in assembly because solidity adds a zero check despite the unchecked.
                // The q polynomial won't have zeros in the domain as all its roots are complex.
                // No scaling is necessary because p is already `2**96` too large.
                r := sdiv(p, q)
            }

            // r should be in the range `(0.09, 0.25) * 2**96`.

            // We now need to multiply r by:
            // - The scale factor `s ≈ 6.031367120`.
            // - The `2**k` factor from the range reduction.
            // - The `1e18 / 2**96` factor for base conversion.
            // We do this all at once, with an intermediate result in `2**213`
            // basis, so the final right shift is always by a positive amount.
            r = int256(
                (uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k)
            );
        }
    }

    /// @dev Returns `ln(x)`, denominated in `WAD`.
    /// Credit to Remco Bloemen under MIT license: https://2π.com/22/exp-ln
    /// Note: This function is an approximation. Monotonically increasing.
    function lnWad(int256 x) internal pure returns (int256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            // We want to convert `x` from `10**18` fixed point to `2**96` fixed point.
            // We do this by multiplying by `2**96 / 10**18`. But since
            // `ln(x * C) = ln(x) + ln(C)`, we can simply do nothing here
            // and add `ln(2**96 / 10**18)` at the end.

            // Compute `k = log2(x) - 96`, `r = 159 - k = 255 - log2(x) = 255 ^ log2(x)`.
            r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(r, shl(3, lt(0xff, shr(r, x))))
            // We place the check here for more optimal stack operations.
            if iszero(sgt(x, 0)) {
                mstore(0x00, 0x1615e638) // `LnWadUndefined()`.
                revert(0x1c, 0x04)
            }
            // forgefmt: disable-next-item
            r := xor(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)),
                0xf8f9f9faf9fdfafbf9fdfcfdfafbfcfef9fafdfafcfcfbfefafafcfbffffffff))

            // Reduce range of x to (1, 2) * 2**96
            // ln(2^k * x) = k * ln(2) + ln(x)
            x := shr(159, shl(r, x))

            // Evaluate using a (8, 8)-term rational approximation.
            // `p` is made monic, we will multiply by a scale factor later.
            // forgefmt: disable-next-item
            let p := sub( // This heavily nested expression is to avoid stack-too-deep for via-ir.
                sar(96, mul(add(43456485725739037958740375743393,
                sar(96, mul(add(24828157081833163892658089445524,
                sar(96, mul(add(3273285459638523848632254066296,
                    x), x))), x))), x)), 11111509109440967052023855526967)
            p := sub(sar(96, mul(p, x)), 45023709667254063763336534515857)
            p := sub(sar(96, mul(p, x)), 14706773417378608786704636184526)
            p := sub(mul(p, x), shl(96, 795164235651350426258249787498))
            // We leave `p` in `2**192` basis so we don't need to scale it back up for the division.

            // `q` is monic by convention.
            let q := add(5573035233440673466300451813936, x)
            q := add(71694874799317883764090561454958, sar(96, mul(x, q)))
            q := add(283447036172924575727196451306956, sar(96, mul(x, q)))
            q := add(401686690394027663651624208769553, sar(96, mul(x, q)))
            q := add(204048457590392012362485061816622, sar(96, mul(x, q)))
            q := add(31853899698501571402653359427138, sar(96, mul(x, q)))
            q := add(909429971244387300277376558375, sar(96, mul(x, q)))

            // `p / q` is in the range `(0, 0.125) * 2**96`.

            // Finalization, we need to:
            // - Multiply by the scale factor `s = 5.549…`.
            // - Add `ln(2**96 / 10**18)`.
            // - Add `k * ln(2)`.
            // - Multiply by `10**18 / 2**96 = 5**18 >> 78`.

            // The q polynomial is known not to have zeros in the domain.
            // No scaling required because p is already `2**96` too large.
            p := sdiv(p, q)
            // Multiply by the scaling factor: `s * 5**18 * 2**96`, base is now `5**18 * 2**192`.
            p := mul(1677202110996718588342820967067443963516166, p)
            // Add `ln(2) * k * 5**18 * 2**192`.
            // forgefmt: disable-next-item
            p := add(mul(16597577552685614221487285958193947469193820559219878177908093499208371, sub(159, r)), p)
            // Add `ln(2**96 / 10**18) * 5**18 * 2**192`.
            p := add(600920179829731861736702779321621459595472258049074101567377883020018308, p)
            // Base conversion: mul `2**18 / 2**192`.
            r := sar(174, p)
        }
    }

    /// @dev Returns `W_0(x)`, denominated in `WAD`.
    /// See: https://en.wikipedia.org/wiki/Lambert_W_function
    /// a.k.a. Product log function. This is an approximation of the principal branch.
    /// Note: This function is an approximation. Monotonically increasing.
    function lambertW0Wad(int256 x) internal pure returns (int256 w) {
        // forgefmt: disable-next-item
        unchecked {
            if ((w = x) <= -367879441171442322) revert OutOfDomain(); // `x` less than `-1/e`.
            (int256 wad, int256 p) = (int256(WAD), x);
            uint256 c; // Whether we need to avoid catastrophic cancellation.
            uint256 i = 4; // Number of iterations.
            if (w <= 0x1ffffffffffff) {
                if (-0x4000000000000 <= w) {
                    i = 1; // Inputs near zero only take one step to converge.
                } else if (w <= -0x3ffffffffffffff) {
                    i = 32; // Inputs near `-1/e` take very long to converge.
                }
            } else if (uint256(w >> 63) == uint256(0)) {
                /// @solidity memory-safe-assembly
                assembly {
                    // Inline log2 for more performance, since the range is small.
                    let v := shr(49, w)
                    let l := shl(3, lt(0xff, v))
                    l := add(or(l, byte(and(0x1f, shr(shr(l, v), 0x8421084210842108cc6318c6db6d54be)),
                        0x0706060506020504060203020504030106050205030304010505030400000000)), 49)
                    w := sdiv(shl(l, 7), byte(sub(l, 31), 0x0303030303030303040506080c13))
                    c := gt(l, 60)
                    i := add(2, add(gt(l, 53), c))
                }
            } else {
                int256 ll = lnWad(w = lnWad(w));
                /// @solidity memory-safe-assembly
                assembly {
                    // `w = ln(x) - ln(ln(x)) + b * ln(ln(x)) / ln(x)`.
                    w := add(sdiv(mul(ll, 1023715080943847266), w), sub(w, ll))
                    i := add(3, iszero(shr(68, x)))
                    c := iszero(shr(143, x))
                }
                if (c == uint256(0)) {
                    do { // If `x` is big, use Newton's so that intermediate values won't overflow.
                        int256 e = expWad(w);
                        /// @solidity memory-safe-assembly
                        assembly {
                            let t := mul(w, div(e, wad))
                            w := sub(w, sdiv(sub(t, x), div(add(e, t), wad)))
                        }
                        if (p <= w) break;
                        p = w;
                    } while (--i != uint256(0));
                    /// @solidity memory-safe-assembly
                    assembly {
                        w := sub(w, sgt(w, 2))
                    }
                    return w;
                }
            }
            do { // Otherwise, use Halley's for faster convergence.
                int256 e = expWad(w);
                /// @solidity memory-safe-assembly
                assembly {
                    let t := add(w, wad)
                    let s := sub(mul(w, e), mul(x, wad))
                    w := sub(w, sdiv(mul(s, wad), sub(mul(e, t), sdiv(mul(add(t, wad), s), add(t, t)))))
                }
                if (p <= w) break;
                p = w;
            } while (--i != c);
            /// @solidity memory-safe-assembly
            assembly {
                w := sub(w, sgt(w, 2))
            }
            // For certain ranges of `x`, we'll use the quadratic-rate recursive formula of
            // R. Iacono and J.P. Boyd for the last iteration, to avoid catastrophic cancellation.
            if (c == uint256(0)) return w;
            int256 t = w | 1;
            /// @solidity memory-safe-assembly
            assembly {
                x := sdiv(mul(x, wad), t)
            }
            x = (t * (wad + lnWad(x)));
            /// @solidity memory-safe-assembly
            assembly {
                w := sdiv(x, add(wad, t))
            }
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                  GENERAL NUMBER UTILITIES                  */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns `a * b == x * y`, with full precision.
    function fullMulEq(uint256 a, uint256 b, uint256 x, uint256 y)
        internal
        pure
        returns (bool result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            result := and(eq(mul(a, b), mul(x, y)), eq(mulmod(x, y, not(0)), mulmod(a, b, not(0))))
        }
    }

    /// @dev Calculates `floor(x * y / d)` with full precision.
    /// Throws if result overflows a uint256 or when `d` is zero.
    /// Credit to Remco Bloemen under MIT license: https://2π.com/21/muldiv
    function fullMulDiv(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // 512-bit multiply `[p1 p0] = x * y`.
            // Compute the product mod `2**256` and mod `2**256 - 1`
            // then use the Chinese Remainder Theorem to reconstruct
            // the 512 bit result. The result is stored in two 256
            // variables such that `product = p1 * 2**256 + p0`.

            // Temporarily use `z` as `p0` to save gas.
            z := mul(x, y) // Lower 256 bits of `x * y`.
            for {} 1 {} {
                // If overflows.
                if iszero(mul(or(iszero(x), eq(div(z, x), y)), d)) {
                    let mm := mulmod(x, y, not(0))
                    let p1 := sub(mm, add(z, lt(mm, z))) // Upper 256 bits of `x * y`.

                    /*------------------- 512 by 256 division --------------------*/

                    // Make division exact by subtracting the remainder from `[p1 p0]`.
                    let r := mulmod(x, y, d) // Compute remainder using mulmod.
                    let t := and(d, sub(0, d)) // The least significant bit of `d`. `t >= 1`.
                    // Make sure `z` is less than `2**256`. Also prevents `d == 0`.
                    // Placing the check here seems to give more optimal stack operations.
                    if iszero(gt(d, p1)) {
                        mstore(0x00, 0xae47f702) // `FullMulDivFailed()`.
                        revert(0x1c, 0x04)
                    }
                    d := div(d, t) // Divide `d` by `t`, which is a power of two.
                    // Invert `d mod 2**256`
                    // Now that `d` is an odd number, it has an inverse
                    // modulo `2**256` such that `d * inv = 1 mod 2**256`.
                    // Compute the inverse by starting with a seed that is correct
                    // correct for four bits. That is, `d * inv = 1 mod 2**4`.
                    let inv := xor(2, mul(3, d))
                    // Now use Newton-Raphson iteration to improve the precision.
                    // Thanks to Hensel's lifting lemma, this also works in modular
                    // arithmetic, doubling the correct bits in each step.
                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**8
                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**16
                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**32
                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**64
                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**128
                    z :=
                        mul(
                            // Divide [p1 p0] by the factors of two.
                            // Shift in bits from `p1` into `p0`. For this we need
                            // to flip `t` such that it is `2**256 / t`.
                            or(mul(sub(p1, gt(r, z)), add(div(sub(0, t), t), 1)), div(sub(z, r), t)),
                            mul(sub(2, mul(d, inv)), inv) // inverse mod 2**256
                        )
                    break
                }
                z := div(z, d)
                break
            }
        }
    }

    /// @dev Calculates `floor(x * y / d)` with full precision.
    /// Behavior is undefined if `d` is zero or the final result cannot fit in 256 bits.
    /// Performs the full 512 bit calculation regardless.
    function fullMulDivUnchecked(uint256 x, uint256 y, uint256 d)
        internal
        pure
        returns (uint256 z)
    {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, y)
            let mm := mulmod(x, y, not(0))
            let p1 := sub(mm, add(z, lt(mm, z)))
            let t := and(d, sub(0, d))
            let r := mulmod(x, y, d)
            d := div(d, t)
            let inv := xor(2, mul(3, d))
            inv := mul(inv, sub(2, mul(d, inv)))
            inv := mul(inv, sub(2, mul(d, inv)))
            inv := mul(inv, sub(2, mul(d, inv)))
            inv := mul(inv, sub(2, mul(d, inv)))
            inv := mul(inv, sub(2, mul(d, inv)))
            z :=
                mul(
                    or(mul(sub(p1, gt(r, z)), add(div(sub(0, t), t), 1)), div(sub(z, r), t)),
                    mul(sub(2, mul(d, inv)), inv)
                )
        }
    }

    /// @dev Calculates `floor(x * y / d)` with full precision, rounded up.
    /// Throws if result overflows a uint256 or when `d` is zero.
    /// Credit to Uniswap-v3-core under MIT license:
    /// https://github.com/Uniswap/v3-core/blob/main/contracts/libraries/FullMath.sol
    function fullMulDivUp(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        z = fullMulDiv(x, y, d);
        /// @solidity memory-safe-assembly
        assembly {
            if mulmod(x, y, d) {
                z := add(z, 1)
                if iszero(z) {
                    mstore(0x00, 0xae47f702) // `FullMulDivFailed()`.
                    revert(0x1c, 0x04)
                }
            }
        }
    }

    /// @dev Calculates `floor(x * y / 2 ** n)` with full precision.
    /// Throws if result overflows a uint256.
    /// Credit to Philogy under MIT license:
    /// https://github.com/SorellaLabs/angstrom/blob/main/contracts/src/libraries/X128MathLib.sol
    function fullMulDivN(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Temporarily use `z` as `p0` to save gas.
            z := mul(x, y) // Lower 256 bits of `x * y`. We'll call this `z`.
            for {} 1 {} {
                if iszero(or(iszero(x), eq(div(z, x), y))) {
                    let k := and(n, 0xff) // `n`, cleaned.
                    let mm := mulmod(x, y, not(0))
                    let p1 := sub(mm, add(z, lt(mm, z))) // Upper 256 bits of `x * y`.
                    //         |      p1     |      z     |
                    // Before: | p1_0 ¦ p1_1 | z_0  ¦ z_1 |
                    // Final:  |   0  ¦ p1_0 | p1_1 ¦ z_0 |
                    // Check that final `z` doesn't overflow by checking that p1_0 = 0.
                    if iszero(shr(k, p1)) {
                        z := add(shl(sub(256, k), p1), shr(k, z))
                        break
                    }
                    mstore(0x00, 0xae47f702) // `FullMulDivFailed()`.
                    revert(0x1c, 0x04)
                }
                z := shr(and(n, 0xff), z)
                break
            }
        }
    }

    /// @dev Returns `floor(x * y / d)`.
    /// Reverts if `x * y` overflows, or `d` is zero.
    function mulDiv(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, y)
            // Equivalent to `require(d != 0 && (y == 0 || x <= type(uint256).max / y))`.
            if iszero(mul(or(iszero(x), eq(div(z, x), y)), d)) {
                mstore(0x00, 0xad251c27) // `MulDivFailed()`.
                revert(0x1c, 0x04)
            }
            z := div(z, d)
        }
    }

    /// @dev Returns `ceil(x * y / d)`.
    /// Reverts if `x * y` overflows, or `d` is zero.
    function mulDivUp(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, y)
            // Equivalent to `require(d != 0 && (y == 0 || x <= type(uint256).max / y))`.
            if iszero(mul(or(iszero(x), eq(div(z, x), y)), d)) {
                mstore(0x00, 0xad251c27) // `MulDivFailed()`.
                revert(0x1c, 0x04)
            }
            z := add(iszero(iszero(mod(z, d))), div(z, d))
        }
    }

    /// @dev Returns `x`, the modular multiplicative inverse of `a`, such that `(a * x) % n == 1`.
    function invMod(uint256 a, uint256 n) internal pure returns (uint256 x) {
        /// @solidity memory-safe-assembly
        assembly {
            let g := n
            let r := mod(a, n)
            for { let y := 1 } 1 {} {
                let q := div(g, r)
                let t := g
                g := r
                r := sub(t, mul(r, q))
                let u := x
                x := y
                y := sub(u, mul(y, q))
                if iszero(r) { break }
            }
            x := mul(eq(g, 1), add(x, mul(slt(x, 0), n)))
        }
    }

    /// @dev Returns `ceil(x / d)`.
    /// Reverts if `d` is zero.
    function divUp(uint256 x, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            if iszero(d) {
                mstore(0x00, 0x65244e4e) // `DivFailed()`.
                revert(0x1c, 0x04)
            }
            z := add(iszero(iszero(mod(x, d))), div(x, d))
        }
    }

    /// @dev Returns `max(0, x - y)`. Alias for `saturatingSub`.
    function zeroFloorSub(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(gt(x, y), sub(x, y))
        }
    }

    /// @dev Returns `max(0, x - y)`.
    function saturatingSub(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(gt(x, y), sub(x, y))
        }
    }

    /// @dev Returns `min(2 ** 256 - 1, x + y)`.
    function saturatingAdd(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := or(sub(0, lt(add(x, y), x)), add(x, y))
        }
    }

    /// @dev Returns `min(2 ** 256 - 1, x * y)`.
    function saturatingMul(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := or(sub(or(iszero(x), eq(div(mul(x, y), x), y)), 1), mul(x, y))
        }
    }

    /// @dev Returns `condition ? x : y`, without branching.
    function ternary(bool condition, uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), iszero(condition)))
        }
    }

    /// @dev Returns `condition ? x : y`, without branching.
    function ternary(bool condition, bytes32 x, bytes32 y) internal pure returns (bytes32 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), iszero(condition)))
        }
    }

    /// @dev Returns `condition ? x : y`, without branching.
    function ternary(bool condition, address x, address y) internal pure returns (address z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), iszero(condition)))
        }
    }

    /// @dev Returns `x != 0 ? x : y`, without branching.
    function coalesce(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := or(x, mul(y, iszero(x)))
        }
    }

    /// @dev Returns `x != bytes32(0) ? x : y`, without branching.
    function coalesce(bytes32 x, bytes32 y) internal pure returns (bytes32 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := or(x, mul(y, iszero(x)))
        }
    }

    /// @dev Returns `x != address(0) ? x : y`, without branching.
    function coalesce(address x, address y) internal pure returns (address z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := or(x, mul(y, iszero(shl(96, x))))
        }
    }

    /// @dev Exponentiate `x` to `y` by squaring, denominated in base `b`.
    /// Reverts if the computation overflows.
    function rpow(uint256 x, uint256 y, uint256 b) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(b, iszero(y)) // `0 ** 0 = 1`. Otherwise, `0 ** n = 0`.
            if x {
                z := xor(b, mul(xor(b, x), and(y, 1))) // `z = isEven(y) ? scale : x`
                let half := shr(1, b) // Divide `b` by 2.
                // Divide `y` by 2 every iteration.
                for { y := shr(1, y) } y { y := shr(1, y) } {
                    let xx := mul(x, x) // Store x squared.
                    let xxRound := add(xx, half) // Round to the nearest number.
                    // Revert if `xx + half` overflowed, or if `x ** 2` overflows.
                    if or(lt(xxRound, xx), shr(128, x)) {
                        mstore(0x00, 0x49f7642b) // `RPowOverflow()`.
                        revert(0x1c, 0x04)
                    }
                    x := div(xxRound, b) // Set `x` to scaled `xxRound`.
                    // If `y` is odd:
                    if and(y, 1) {
                        let zx := mul(z, x) // Compute `z * x`.
                        let zxRound := add(zx, half) // Round to the nearest number.
                        // If `z * x` overflowed or `zx + half` overflowed:
                        if or(xor(div(zx, x), z), lt(zxRound, zx)) {
                            // Revert if `x` is non-zero.
                            if x {
                                mstore(0x00, 0x49f7642b) // `RPowOverflow()`.
                                revert(0x1c, 0x04)
                            }
                        }
                        z := div(zxRound, b) // Return properly scaled `zxRound`.
                    }
                }
            }
        }
    }

    /// @dev Returns the square root of `x`, rounded down.
    function sqrt(uint256 x) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // `floor(sqrt(2**15)) = 181`. `sqrt(2**15) - 181 = 2.84`.
            z := 181 // The "correct" value is 1, but this saves a multiplication later.

            // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
            // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.

            // Let `y = x / 2**r`. We check `y >= 2**(k + 8)`
            // but shift right by `k` bits to ensure that if `x >= 256`, then `y >= 256`.
            let r := shl(7, lt(0xffffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffffff, shr(r, x))))
            z := shl(shr(1, r), z)

            // Goal was to get `z*z*y` within a small factor of `x`. More iterations could
            // get y in a tighter range. Currently, we will have y in `[256, 256*(2**16))`.
            // We ensured `y >= 256` so that the relative difference between `y` and `y+1` is small.
            // That's not possible if `x < 256` but we can just verify those cases exhaustively.

            // Now, `z*z*y <= x < z*z*(y+1)`, and `y <= 2**(16+8)`, and either `y >= 256`, or `x < 256`.
            // Correctness can be checked exhaustively for `x < 256`, so we assume `y >= 256`.
            // Then `z*sqrt(y)` is within `sqrt(257)/sqrt(256)` of `sqrt(x)`, or about 20bps.

            // For `s` in the range `[1/256, 256]`, the estimate `f(s) = (181/1024) * (s+1)`
            // is in the range `(1/2.84 * sqrt(s), 2.84 * sqrt(s))`,
            // with largest error when `s = 1` and when `s = 256` or `1/256`.

            // Since `y` is in `[256, 256*(2**16))`, let `a = y/65536`, so that `a` is in `[1/256, 256)`.
            // Then we can estimate `sqrt(y)` using
            // `sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2**18`.

            // There is no overflow risk here since `y < 2**136` after the first branch above.
            z := shr(18, mul(z, add(shr(r, x), 65536))) // A `mul()` is saved from starting `z` at 181.

            // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))

            // If `x+1` is a perfect square, the Babylonian method cycles between
            // `floor(sqrt(x))` and `ceil(sqrt(x))`. This statement ensures we return floor.
            // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
            z := sub(z, lt(div(x, z), z))
        }
    }

    /// @dev Returns the cube root of `x`, rounded down.
    /// Credit to bout3fiddy and pcaversaccio under AGPLv3 license:
    /// https://github.com/pcaversaccio/snekmate/blob/main/src/utils/Math.vy
    /// Formally verified by xuwinnie:
    /// https://github.com/vectorized/solady/blob/main/audits/xuwinnie-solady-cbrt-proof.pdf
    function cbrt(uint256 x) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            let r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(r, shl(3, lt(0xff, shr(r, x))))
            // Makeshift lookup table to nudge the approximate log2 result.
            z := div(shl(div(r, 3), shl(lt(0xf, shr(r, x)), 0xf)), xor(7, mod(r, 3)))
            // Newton-Raphson's.
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            // Round down.
            z := sub(z, lt(div(x, mul(z, z)), z))
        }
    }

    /// @dev Returns the square root of `x`, denominated in `WAD`, rounded down.
    function sqrtWad(uint256 x) internal pure returns (uint256 z) {
        unchecked {
            if (x <= type(uint256).max / 10 ** 18) return sqrt(x * 10 ** 18);
            z = (1 + sqrt(x)) * 10 ** 9;
            z = (fullMulDivUnchecked(x, 10 ** 18, z) + z) >> 1;
        }
        /// @solidity memory-safe-assembly
        assembly {
            z := sub(z, gt(999999999999999999, sub(mulmod(z, z, x), 1))) // Round down.
        }
    }

    /// @dev Returns the cube root of `x`, denominated in `WAD`, rounded down.
    /// Formally verified by xuwinnie:
    /// https://github.com/vectorized/solady/blob/main/audits/xuwinnie-solady-cbrt-proof.pdf
    function cbrtWad(uint256 x) internal pure returns (uint256 z) {
        unchecked {
            if (x <= type(uint256).max / 10 ** 36) return cbrt(x * 10 ** 36);
            z = (1 + cbrt(x)) * 10 ** 12;
            z = (fullMulDivUnchecked(x, 10 ** 36, z * z) + z + z) / 3;
        }
        /// @solidity memory-safe-assembly
        assembly {
            let p := x
            for {} 1 {} {
                if iszero(shr(229, p)) {
                    if iszero(shr(199, p)) {
                        p := mul(p, 100000000000000000) // 10 ** 17.
                        break
                    }
                    p := mul(p, 100000000) // 10 ** 8.
                    break
                }
                if iszero(shr(249, p)) { p := mul(p, 100) }
                break
            }
            let t := mulmod(mul(z, z), z, p)
            z := sub(z, gt(lt(t, shr(1, p)), iszero(t))) // Round down.
        }
    }

    /// @dev Returns the factorial of `x`.
    function factorial(uint256 x) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := 1
            if iszero(lt(x, 58)) {
                mstore(0x00, 0xaba0f2a2) // `FactorialOverflow()`.
                revert(0x1c, 0x04)
            }
            for {} x { x := sub(x, 1) } { z := mul(z, x) }
        }
    }

    /// @dev Returns the log2 of `x`.
    /// Equivalent to computing the index of the most significant bit (MSB) of `x`.
    /// Returns 0 if `x` is zero.
    function log2(uint256 x) internal pure returns (uint256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(r, shl(3, lt(0xff, shr(r, x))))
            // forgefmt: disable-next-item
            r := or(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)),
                0x0706060506020504060203020504030106050205030304010505030400000000))
        }
    }

    /// @dev Returns the log2 of `x`, rounded up.
    /// Returns 0 if `x` is zero.
    function log2Up(uint256 x) internal pure returns (uint256 r) {
        r = log2(x);
        /// @solidity memory-safe-assembly
        assembly {
            r := add(r, lt(shl(r, 1), x))
        }
    }

    /// @dev Returns the log10 of `x`.
    /// Returns 0 if `x` is zero.
    function log10(uint256 x) internal pure returns (uint256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            if iszero(lt(x, 100000000000000000000000000000000000000)) {
                x := div(x, 100000000000000000000000000000000000000)
                r := 38
            }
            if iszero(lt(x, 100000000000000000000)) {
                x := div(x, 100000000000000000000)
                r := add(r, 20)
            }
            if iszero(lt(x, 10000000000)) {
                x := div(x, 10000000000)
                r := add(r, 10)
            }
            if iszero(lt(x, 100000)) {
                x := div(x, 100000)
                r := add(r, 5)
            }
            r := add(r, add(gt(x, 9), add(gt(x, 99), add(gt(x, 999), gt(x, 9999)))))
        }
    }

    /// @dev Returns the log10 of `x`, rounded up.
    /// Returns 0 if `x` is zero.
    function log10Up(uint256 x) internal pure returns (uint256 r) {
        r = log10(x);
        /// @solidity memory-safe-assembly
        assembly {
            r := add(r, lt(exp(10, r), x))
        }
    }

    /// @dev Returns the log256 of `x`.
    /// Returns 0 if `x` is zero.
    function log256(uint256 x) internal pure returns (uint256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(shr(3, r), lt(0xff, shr(r, x)))
        }
    }

    /// @dev Returns the log256 of `x`, rounded up.
    /// Returns 0 if `x` is zero.
    function log256Up(uint256 x) internal pure returns (uint256 r) {
        r = log256(x);
        /// @solidity memory-safe-assembly
        assembly {
            r := add(r, lt(shl(shl(3, r), 1), x))
        }
    }

    /// @dev Returns the scientific notation format `mantissa * 10 ** exponent` of `x`.
    /// Useful for compressing prices (e.g. using 25 bit mantissa and 7 bit exponent).
    function sci(uint256 x) internal pure returns (uint256 mantissa, uint256 exponent) {
        /// @solidity memory-safe-assembly
        assembly {
            mantissa := x
            if mantissa {
                if iszero(mod(mantissa, 1000000000000000000000000000000000)) {
                    mantissa := div(mantissa, 1000000000000000000000000000000000)
                    exponent := 33
                }
                if iszero(mod(mantissa, 10000000000000000000)) {
                    mantissa := div(mantissa, 10000000000000000000)
                    exponent := add(exponent, 19)
                }
                if iszero(mod(mantissa, 1000000000000)) {
                    mantissa := div(mantissa, 1000000000000)
                    exponent := add(exponent, 12)
                }
                if iszero(mod(mantissa, 1000000)) {
                    mantissa := div(mantissa, 1000000)
                    exponent := add(exponent, 6)
                }
                if iszero(mod(mantissa, 10000)) {
                    mantissa := div(mantissa, 10000)
                    exponent := add(exponent, 4)
                }
                if iszero(mod(mantissa, 100)) {
                    mantissa := div(mantissa, 100)
                    exponent := add(exponent, 2)
                }
                if iszero(mod(mantissa, 10)) {
                    mantissa := div(mantissa, 10)
                    exponent := add(exponent, 1)
                }
            }
        }
    }

    /// @dev Convenience function for packing `x` into a smaller number using `sci`.
    /// The `mantissa` will be in bits [7..255] (the upper 249 bits).
    /// The `exponent` will be in bits [0..6] (the lower 7 bits).
    /// Use `SafeCastLib` to safely ensure that the `packed` number is small
    /// enough to fit in the desired unsigned integer type:
    /// ```
    ///     uint32 packed = SafeCastLib.toUint32(FixedPointMathLib.packSci(777 ether));
    /// ```
    function packSci(uint256 x) internal pure returns (uint256 packed) {
        (x, packed) = sci(x); // Reuse for `mantissa` and `exponent`.
        /// @solidity memory-safe-assembly
        assembly {
            if shr(249, x) {
                mstore(0x00, 0xce30380c) // `MantissaOverflow()`.
                revert(0x1c, 0x04)
            }
            packed := or(shl(7, x), packed)
        }
    }

    /// @dev Convenience function for unpacking a packed number from `packSci`.
    function unpackSci(uint256 packed) internal pure returns (uint256 unpacked) {
        unchecked {
            unpacked = (packed >> 7) * 10 ** (packed & 0x7f);
        }
    }

    /// @dev Returns the average of `x` and `y`. Rounds towards zero.
    function avg(uint256 x, uint256 y) internal pure returns (uint256 z) {
        unchecked {
            z = (x & y) + ((x ^ y) >> 1);
        }
    }

    /// @dev Returns the average of `x` and `y`. Rounds towards negative infinity.
    function avg(int256 x, int256 y) internal pure returns (int256 z) {
        unchecked {
            z = (x >> 1) + (y >> 1) + (x & y & 1);
        }
    }

    /// @dev Returns the absolute value of `x`.
    function abs(int256 x) internal pure returns (uint256 z) {
        unchecked {
            z = (uint256(x) + uint256(x >> 255)) ^ uint256(x >> 255);
        }
    }

    /// @dev Returns the absolute distance between `x` and `y`.
    function dist(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := add(xor(sub(0, gt(x, y)), sub(y, x)), gt(x, y))
        }
    }

    /// @dev Returns the absolute distance between `x` and `y`.
    function dist(int256 x, int256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := add(xor(sub(0, sgt(x, y)), sub(y, x)), sgt(x, y))
        }
    }

    /// @dev Returns the minimum of `x` and `y`.
    function min(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), lt(y, x)))
        }
    }

    /// @dev Returns the minimum of `x` and `y`.
    function min(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), slt(y, x)))
        }
    }

    /// @dev Returns the maximum of `x` and `y`.
    function max(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), gt(y, x)))
        }
    }

    /// @dev Returns the maximum of `x` and `y`.
    function max(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), sgt(y, x)))
        }
    }

    /// @dev Returns `x`, bounded to `minValue` and `maxValue`.
    function clamp(uint256 x, uint256 minValue, uint256 maxValue)
        internal
        pure
        returns (uint256 z)
    {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, minValue), gt(minValue, x)))
            z := xor(z, mul(xor(z, maxValue), lt(maxValue, z)))
        }
    }

    /// @dev Returns `x`, bounded to `minValue` and `maxValue`.
    function clamp(int256 x, int256 minValue, int256 maxValue) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, minValue), sgt(minValue, x)))
            z := xor(z, mul(xor(z, maxValue), slt(maxValue, z)))
        }
    }

    /// @dev Returns greatest common divisor of `x` and `y`.
    function gcd(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            for { z := x } y {} {
                let t := y
                y := mod(z, y)
                z := t
            }
        }
    }

    /// @dev Returns `a + (b - a) * (t - begin) / (end - begin)`,
    /// with `t` clamped between `begin` and `end` (inclusive).
    /// Agnostic to the order of (`a`, `b`) and (`end`, `begin`).
    /// If `begins == end`, returns `t <= begin ? a : b`.
    function lerp(uint256 a, uint256 b, uint256 t, uint256 begin, uint256 end)
        internal
        pure
        returns (uint256)
    {
        if (begin > end) (t, begin, end) = (~t, ~begin, ~end);
        if (t <= begin) return a;
        if (t >= end) return b;
        unchecked {
            if (b >= a) return a + fullMulDiv(b - a, t - begin, end - begin);
            return a - fullMulDiv(a - b, t - begin, end - begin);
        }
    }

    /// @dev Returns `a + (b - a) * (t - begin) / (end - begin)`.
    /// with `t` clamped between `begin` and `end` (inclusive).
    /// Agnostic to the order of (`a`, `b`) and (`end`, `begin`).
    /// If `begins == end`, returns `t <= begin ? a : b`.
    function lerp(int256 a, int256 b, int256 t, int256 begin, int256 end)
        internal
        pure
        returns (int256)
    {
        if (begin > end) (t, begin, end) = (~t, ~begin, ~end);
        if (t <= begin) return a;
        if (t >= end) return b;
        // forgefmt: disable-next-item
        unchecked {
            if (b >= a) return int256(uint256(a) + fullMulDiv(uint256(b - a),
                uint256(t - begin), uint256(end - begin)));
            return int256(uint256(a) - fullMulDiv(uint256(a - b),
                uint256(t - begin), uint256(end - begin)));
        }
    }

    /// @dev Returns if `x` is an even number. Some people may need this.
    function isEven(uint256 x) internal pure returns (bool) {
        return x & uint256(1) == uint256(0);
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                   RAW NUMBER OPERATIONS                    */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns `x + y`, without checking for overflow.
    function rawAdd(uint256 x, uint256 y) internal pure returns (uint256 z) {
        unchecked {
            z = x + y;
        }
    }

    /// @dev Returns `x + y`, without checking for overflow.
    function rawAdd(int256 x, int256 y) internal pure returns (int256 z) {
        unchecked {
            z = x + y;
        }
    }

    /// @dev Returns `x - y`, without checking for underflow.
    function rawSub(uint256 x, uint256 y) internal pure returns (uint256 z) {
        unchecked {
            z = x - y;
        }
    }

    /// @dev Returns `x - y`, without checking for underflow.
    function rawSub(int256 x, int256 y) internal pure returns (int256 z) {
        unchecked {
            z = x - y;
        }
    }

    /// @dev Returns `x * y`, without checking for overflow.
    function rawMul(uint256 x, uint256 y) internal pure returns (uint256 z) {
        unchecked {
            z = x * y;
        }
    }

    /// @dev Returns `x * y`, without checking for overflow.
    function rawMul(int256 x, int256 y) internal pure returns (int256 z) {
        unchecked {
            z = x * y;
        }
    }

    /// @dev Returns `x / y`, returning 0 if `y` is zero.
    function rawDiv(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := div(x, y)
        }
    }

    /// @dev Returns `x / y`, returning 0 if `y` is zero.
    function rawSDiv(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := sdiv(x, y)
        }
    }

    /// @dev Returns `x % y`, returning 0 if `y` is zero.
    function rawMod(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mod(x, y)
        }
    }

    /// @dev Returns `x % y`, returning 0 if `y` is zero.
    function rawSMod(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := smod(x, y)
        }
    }

    /// @dev Returns `(x + y) % d`, return 0 if `d` if zero.
    function rawAddMod(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := addmod(x, y, d)
        }
    }

    /// @dev Returns `(x * y) % d`, return 0 if `d` if zero.
    function rawMulMod(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mulmod(x, y, d)
        }
    }
}

File 6 of 20 : UUPSUpgradeable.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

import {CallContextChecker} from "./CallContextChecker.sol";

/// @notice UUPS proxy mixin.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/UUPSUpgradeable.sol)
/// @author Modified from OpenZeppelin
/// (https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/proxy/utils/UUPSUpgradeable.sol)
///
/// @dev Note:
/// - This implementation is intended to be used with ERC1967 proxies.
/// See: `LibClone.deployERC1967` and related functions.
/// - This implementation is NOT compatible with legacy OpenZeppelin proxies
/// which do not store the implementation at `_ERC1967_IMPLEMENTATION_SLOT`.
abstract contract UUPSUpgradeable is CallContextChecker {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       CUSTOM ERRORS                        */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The upgrade failed.
    error UpgradeFailed();

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                           EVENTS                           */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Emitted when the proxy's implementation is upgraded.
    event Upgraded(address indexed implementation);

    /// @dev `keccak256(bytes("Upgraded(address)"))`.
    uint256 private constant _UPGRADED_EVENT_SIGNATURE =
        0xbc7cd75a20ee27fd9adebab32041f755214dbc6bffa90cc0225b39da2e5c2d3b;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                          STORAGE                           */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The ERC-1967 storage slot for the implementation in the proxy.
    /// `uint256(keccak256("eip1967.proxy.implementation")) - 1`.
    bytes32 internal constant _ERC1967_IMPLEMENTATION_SLOT =
        0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                      UUPS OPERATIONS                       */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Please override this function to check if `msg.sender` is authorized
    /// to upgrade the proxy to `newImplementation`, reverting if not.
    /// ```
    ///     function _authorizeUpgrade(address) internal override onlyOwner {}
    /// ```
    function _authorizeUpgrade(address newImplementation) internal virtual;

    /// @dev Returns the storage slot used by the implementation,
    /// as specified in [ERC1822](https://eips.ethereum.org/EIPS/eip-1822).
    ///
    /// Note: The `notDelegated` modifier prevents accidental upgrades to
    /// an implementation that is a proxy contract.
    function proxiableUUID() public view virtual notDelegated returns (bytes32) {
        // This function must always return `_ERC1967_IMPLEMENTATION_SLOT` to comply with ERC1967.
        return _ERC1967_IMPLEMENTATION_SLOT;
    }

    /// @dev Upgrades the proxy's implementation to `newImplementation`.
    /// Emits a {Upgraded} event.
    ///
    /// Note: Passing in empty `data` skips the delegatecall to `newImplementation`.
    function upgradeToAndCall(address newImplementation, bytes calldata data)
        public
        payable
        virtual
        onlyProxy
    {
        _authorizeUpgrade(newImplementation);
        /// @solidity memory-safe-assembly
        assembly {
            newImplementation := shr(96, shl(96, newImplementation)) // Clears upper 96 bits.
            mstore(0x00, returndatasize())
            mstore(0x01, 0x52d1902d) // `proxiableUUID()`.
            let s := _ERC1967_IMPLEMENTATION_SLOT
            // Check if `newImplementation` implements `proxiableUUID` correctly.
            if iszero(eq(mload(staticcall(gas(), newImplementation, 0x1d, 0x04, 0x01, 0x20)), s)) {
                mstore(0x01, 0x55299b49) // `UpgradeFailed()`.
                revert(0x1d, 0x04)
            }
            // Emit the {Upgraded} event.
            log2(codesize(), 0x00, _UPGRADED_EVENT_SIGNATURE, newImplementation)
            sstore(s, newImplementation) // Updates the implementation.

            // Perform a delegatecall to `newImplementation` if `data` is non-empty.
            if data.length {
                // Forwards the `data` to `newImplementation` via delegatecall.
                let m := mload(0x40)
                calldatacopy(m, data.offset, data.length)
                if iszero(delegatecall(gas(), newImplementation, m, data.length, codesize(), 0x00))
                {
                    // Bubble up the revert if the call reverts.
                    returndatacopy(m, 0x00, returndatasize())
                    revert(m, returndatasize())
                }
            }
        }
    }
}

File 7 of 20 : Initializable.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Initializable mixin for the upgradeable contracts.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/Initializable.sol)
/// @author Modified from OpenZeppelin (https://github.com/OpenZeppelin/openzeppelin-contracts/tree/master/contracts/proxy/utils/Initializable.sol)
abstract contract Initializable {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       CUSTOM ERRORS                        */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The contract is already initialized.
    error InvalidInitialization();

    /// @dev The contract is not initializing.
    error NotInitializing();

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                           EVENTS                           */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Triggered when the contract has been initialized.
    event Initialized(uint64 version);

    /// @dev `keccak256(bytes("Initialized(uint64)"))`.
    bytes32 private constant _INTIALIZED_EVENT_SIGNATURE =
        0xc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d2;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                          STORAGE                           */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The default initializable slot is given by:
    /// `bytes32(~uint256(uint32(bytes4(keccak256("_INITIALIZABLE_SLOT")))))`.
    ///
    /// Bits Layout:
    /// - [0]     `initializing`
    /// - [1..64] `initializedVersion`
    bytes32 private constant _INITIALIZABLE_SLOT =
        0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffbf601132;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                        CONSTRUCTOR                         */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    constructor() {
        // Construction time check to ensure that `_initializableSlot()` is not
        // overridden to zero. Will be optimized away if there is no revert.
        require(_initializableSlot() != bytes32(0));
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                         OPERATIONS                         */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Override to return a non-zero custom storage slot if required.
    function _initializableSlot() internal pure virtual returns (bytes32) {
        return _INITIALIZABLE_SLOT;
    }

    /// @dev Guards an initializer function so that it can be invoked at most once.
    ///
    /// You can guard a function with `onlyInitializing` such that it can be called
    /// through a function guarded with `initializer`.
    ///
    /// This is similar to `reinitializer(1)`, except that in the context of a constructor,
    /// an `initializer` guarded function can be invoked multiple times.
    /// This can be useful during testing and is not expected to be used in production.
    ///
    /// Emits an {Initialized} event.
    modifier initializer() virtual {
        bytes32 s = _initializableSlot();
        /// @solidity memory-safe-assembly
        assembly {
            let i := sload(s)
            // Set `initializing` to 1, `initializedVersion` to 1.
            sstore(s, 3)
            // If `!(initializing == 0 && initializedVersion == 0)`.
            if i {
                // If `!(address(this).code.length == 0 && initializedVersion == 1)`.
                if iszero(lt(extcodesize(address()), eq(shr(1, i), 1))) {
                    mstore(0x00, 0xf92ee8a9) // `InvalidInitialization()`.
                    revert(0x1c, 0x04)
                }
                s := shl(shl(255, i), s) // Skip initializing if `initializing == 1`.
            }
        }
        _;
        /// @solidity memory-safe-assembly
        assembly {
            if s {
                // Set `initializing` to 0, `initializedVersion` to 1.
                sstore(s, 2)
                // Emit the {Initialized} event.
                mstore(0x20, 1)
                log1(0x20, 0x20, _INTIALIZED_EVENT_SIGNATURE)
            }
        }
    }

    /// @dev Guards an reinitialzer function so that it can be invoked at most once.
    ///
    /// You can guard a function with `onlyInitializing` such that it can be called
    /// through a function guarded with `reinitializer`.
    ///
    /// Emits an {Initialized} event.
    modifier reinitializer(uint64 version) virtual {
        bytes32 s = _initializableSlot();
        /// @solidity memory-safe-assembly
        assembly {
            // Clean upper bits, and shift left by 1 to make space for the initializing bit.
            version := shl(1, and(version, 0xffffffffffffffff))
            let i := sload(s)
            // If `initializing == 1 || initializedVersion >= version`.
            if iszero(lt(and(i, 1), lt(i, version))) {
                mstore(0x00, 0xf92ee8a9) // `InvalidInitialization()`.
                revert(0x1c, 0x04)
            }
            // Set `initializing` to 1, `initializedVersion` to `version`.
            sstore(s, or(1, version))
        }
        _;
        /// @solidity memory-safe-assembly
        assembly {
            // Set `initializing` to 0, `initializedVersion` to `version`.
            sstore(s, version)
            // Emit the {Initialized} event.
            mstore(0x20, shr(1, version))
            log1(0x20, 0x20, _INTIALIZED_EVENT_SIGNATURE)
        }
    }

    /// @dev Guards a function such that it can only be called in the scope
    /// of a function guarded with `initializer` or `reinitializer`.
    modifier onlyInitializing() virtual {
        _checkInitializing();
        _;
    }

    /// @dev Reverts if the contract is not initializing.
    function _checkInitializing() internal view virtual {
        bytes32 s = _initializableSlot();
        /// @solidity memory-safe-assembly
        assembly {
            if iszero(and(1, sload(s))) {
                mstore(0x00, 0xd7e6bcf8) // `NotInitializing()`.
                revert(0x1c, 0x04)
            }
        }
    }

    /// @dev Locks any future initializations by setting the initialized version to `2**64 - 1`.
    ///
    /// Calling this in the constructor will prevent the contract from being initialized
    /// or reinitialized. It is recommended to use this to lock implementation contracts
    /// that are designed to be called through proxies.
    ///
    /// Emits an {Initialized} event the first time it is successfully called.
    function _disableInitializers() internal virtual {
        bytes32 s = _initializableSlot();
        /// @solidity memory-safe-assembly
        assembly {
            let i := sload(s)
            if and(i, 1) {
                mstore(0x00, 0xf92ee8a9) // `InvalidInitialization()`.
                revert(0x1c, 0x04)
            }
            let uint64max := 0xffffffffffffffff
            if iszero(eq(shr(1, i), uint64max)) {
                // Set `initializing` to 0, `initializedVersion` to `2**64 - 1`.
                sstore(s, shl(1, uint64max))
                // Emit the {Initialized} event.
                mstore(0x20, uint64max)
                log1(0x20, 0x20, _INTIALIZED_EVENT_SIGNATURE)
            }
        }
    }

    /// @dev Returns the highest version that has been initialized.
    function _getInitializedVersion() internal view virtual returns (uint64 version) {
        bytes32 s = _initializableSlot();
        /// @solidity memory-safe-assembly
        assembly {
            version := shr(1, sload(s))
        }
    }

    /// @dev Returns whether the contract is currently initializing.
    function _isInitializing() internal view virtual returns (bool result) {
        bytes32 s = _initializableSlot();
        /// @solidity memory-safe-assembly
        assembly {
            result := and(1, sload(s))
        }
    }
}

File 8 of 20 : OwnableRoles.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

import {Ownable} from "./Ownable.sol";

/// @notice Simple single owner and multiroles authorization mixin.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/auth/OwnableRoles.sol)
///
/// @dev Note:
/// This implementation does NOT auto-initialize the owner to `msg.sender`.
/// You MUST call the `_initializeOwner` in the constructor / initializer.
///
/// While the ownable portion follows
/// [EIP-173](https://eips.ethereum.org/EIPS/eip-173) for compatibility,
/// the nomenclature for the 2-step ownership handover may be unique to this codebase.
abstract contract OwnableRoles is Ownable {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                           EVENTS                           */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The `user`'s roles is updated to `roles`.
    /// Each bit of `roles` represents whether the role is set.
    event RolesUpdated(address indexed user, uint256 indexed roles);

    /// @dev `keccak256(bytes("RolesUpdated(address,uint256)"))`.
    uint256 private constant _ROLES_UPDATED_EVENT_SIGNATURE =
        0x715ad5ce61fc9595c7b415289d59cf203f23a94fa06f04af7e489a0a76e1fe26;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                          STORAGE                           */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The role slot of `user` is given by:
    /// ```
    ///     mstore(0x00, or(shl(96, user), _ROLE_SLOT_SEED))
    ///     let roleSlot := keccak256(0x00, 0x20)
    /// ```
    /// This automatically ignores the upper bits of the `user` in case
    /// they are not clean, as well as keep the `keccak256` under 32-bytes.
    ///
    /// Note: This is equivalent to `uint32(bytes4(keccak256("_OWNER_SLOT_NOT")))`.
    uint256 private constant _ROLE_SLOT_SEED = 0x8b78c6d8;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                     INTERNAL FUNCTIONS                     */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Overwrite the roles directly without authorization guard.
    function _setRoles(address user, uint256 roles) internal virtual {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x0c, _ROLE_SLOT_SEED)
            mstore(0x00, user)
            // Store the new value.
            sstore(keccak256(0x0c, 0x20), roles)
            // Emit the {RolesUpdated} event.
            log3(0, 0, _ROLES_UPDATED_EVENT_SIGNATURE, shr(96, mload(0x0c)), roles)
        }
    }

    /// @dev Updates the roles directly without authorization guard.
    /// If `on` is true, each set bit of `roles` will be turned on,
    /// otherwise, each set bit of `roles` will be turned off.
    function _updateRoles(address user, uint256 roles, bool on) internal virtual {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x0c, _ROLE_SLOT_SEED)
            mstore(0x00, user)
            let roleSlot := keccak256(0x0c, 0x20)
            // Load the current value.
            let current := sload(roleSlot)
            // Compute the updated roles if `on` is true.
            let updated := or(current, roles)
            // Compute the updated roles if `on` is false.
            // Use `and` to compute the intersection of `current` and `roles`,
            // `xor` it with `current` to flip the bits in the intersection.
            if iszero(on) { updated := xor(current, and(current, roles)) }
            // Then, store the new value.
            sstore(roleSlot, updated)
            // Emit the {RolesUpdated} event.
            log3(0, 0, _ROLES_UPDATED_EVENT_SIGNATURE, shr(96, mload(0x0c)), updated)
        }
    }

    /// @dev Grants the roles directly without authorization guard.
    /// Each bit of `roles` represents the role to turn on.
    function _grantRoles(address user, uint256 roles) internal virtual {
        _updateRoles(user, roles, true);
    }

    /// @dev Removes the roles directly without authorization guard.
    /// Each bit of `roles` represents the role to turn off.
    function _removeRoles(address user, uint256 roles) internal virtual {
        _updateRoles(user, roles, false);
    }

    /// @dev Throws if the sender does not have any of the `roles`.
    function _checkRoles(uint256 roles) internal view virtual {
        /// @solidity memory-safe-assembly
        assembly {
            // Compute the role slot.
            mstore(0x0c, _ROLE_SLOT_SEED)
            mstore(0x00, caller())
            // Load the stored value, and if the `and` intersection
            // of the value and `roles` is zero, revert.
            if iszero(and(sload(keccak256(0x0c, 0x20)), roles)) {
                mstore(0x00, 0x82b42900) // `Unauthorized()`.
                revert(0x1c, 0x04)
            }
        }
    }

    /// @dev Throws if the sender is not the owner,
    /// and does not have any of the `roles`.
    /// Checks for ownership first, then lazily checks for roles.
    function _checkOwnerOrRoles(uint256 roles) internal view virtual {
        /// @solidity memory-safe-assembly
        assembly {
            // If the caller is not the stored owner.
            // Note: `_ROLE_SLOT_SEED` is equal to `_OWNER_SLOT_NOT`.
            if iszero(eq(caller(), sload(not(_ROLE_SLOT_SEED)))) {
                // Compute the role slot.
                mstore(0x0c, _ROLE_SLOT_SEED)
                mstore(0x00, caller())
                // Load the stored value, and if the `and` intersection
                // of the value and `roles` is zero, revert.
                if iszero(and(sload(keccak256(0x0c, 0x20)), roles)) {
                    mstore(0x00, 0x82b42900) // `Unauthorized()`.
                    revert(0x1c, 0x04)
                }
            }
        }
    }

    /// @dev Throws if the sender does not have any of the `roles`,
    /// and is not the owner.
    /// Checks for roles first, then lazily checks for ownership.
    function _checkRolesOrOwner(uint256 roles) internal view virtual {
        /// @solidity memory-safe-assembly
        assembly {
            // Compute the role slot.
            mstore(0x0c, _ROLE_SLOT_SEED)
            mstore(0x00, caller())
            // Load the stored value, and if the `and` intersection
            // of the value and `roles` is zero, revert.
            if iszero(and(sload(keccak256(0x0c, 0x20)), roles)) {
                // If the caller is not the stored owner.
                // Note: `_ROLE_SLOT_SEED` is equal to `_OWNER_SLOT_NOT`.
                if iszero(eq(caller(), sload(not(_ROLE_SLOT_SEED)))) {
                    mstore(0x00, 0x82b42900) // `Unauthorized()`.
                    revert(0x1c, 0x04)
                }
            }
        }
    }

    /// @dev Convenience function to return a `roles` bitmap from an array of `ordinals`.
    /// This is meant for frontends like Etherscan, and is therefore not fully optimized.
    /// Not recommended to be called on-chain.
    /// Made internal to conserve bytecode. Wrap it in a public function if needed.
    function _rolesFromOrdinals(uint8[] memory ordinals) internal pure returns (uint256 roles) {
        /// @solidity memory-safe-assembly
        assembly {
            for { let i := shl(5, mload(ordinals)) } i { i := sub(i, 0x20) } {
                // We don't need to mask the values of `ordinals`, as Solidity
                // cleans dirty upper bits when storing variables into memory.
                roles := or(shl(mload(add(ordinals, i)), 1), roles)
            }
        }
    }

    /// @dev Convenience function to return an array of `ordinals` from the `roles` bitmap.
    /// This is meant for frontends like Etherscan, and is therefore not fully optimized.
    /// Not recommended to be called on-chain.
    /// Made internal to conserve bytecode. Wrap it in a public function if needed.
    function _ordinalsFromRoles(uint256 roles) internal pure returns (uint8[] memory ordinals) {
        /// @solidity memory-safe-assembly
        assembly {
            // Grab the pointer to the free memory.
            ordinals := mload(0x40)
            let ptr := add(ordinals, 0x20)
            let o := 0
            // The absence of lookup tables, De Bruijn, etc., here is intentional for
            // smaller bytecode, as this function is not meant to be called on-chain.
            for { let t := roles } 1 {} {
                mstore(ptr, o)
                // `shr` 5 is equivalent to multiplying by 0x20.
                // Push back into the ordinals array if the bit is set.
                ptr := add(ptr, shl(5, and(t, 1)))
                o := add(o, 1)
                t := shr(o, roles)
                if iszero(t) { break }
            }
            // Store the length of `ordinals`.
            mstore(ordinals, shr(5, sub(ptr, add(ordinals, 0x20))))
            // Allocate the memory.
            mstore(0x40, ptr)
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                  PUBLIC UPDATE FUNCTIONS                   */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Allows the owner to grant `user` `roles`.
    /// If the `user` already has a role, then it will be an no-op for the role.
    function grantRoles(address user, uint256 roles) public payable virtual onlyOwner {
        _grantRoles(user, roles);
    }

    /// @dev Allows the owner to remove `user` `roles`.
    /// If the `user` does not have a role, then it will be an no-op for the role.
    function revokeRoles(address user, uint256 roles) public payable virtual onlyOwner {
        _removeRoles(user, roles);
    }

    /// @dev Allow the caller to remove their own roles.
    /// If the caller does not have a role, then it will be an no-op for the role.
    function renounceRoles(uint256 roles) public payable virtual {
        _removeRoles(msg.sender, roles);
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                   PUBLIC READ FUNCTIONS                    */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns the roles of `user`.
    function rolesOf(address user) public view virtual returns (uint256 roles) {
        /// @solidity memory-safe-assembly
        assembly {
            // Compute the role slot.
            mstore(0x0c, _ROLE_SLOT_SEED)
            mstore(0x00, user)
            // Load the stored value.
            roles := sload(keccak256(0x0c, 0x20))
        }
    }

    /// @dev Returns whether `user` has any of `roles`.
    function hasAnyRole(address user, uint256 roles) public view virtual returns (bool) {
        return rolesOf(user) & roles != 0;
    }

    /// @dev Returns whether `user` has all of `roles`.
    function hasAllRoles(address user, uint256 roles) public view virtual returns (bool) {
        return rolesOf(user) & roles == roles;
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                         MODIFIERS                          */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Marks a function as only callable by an account with `roles`.
    modifier onlyRoles(uint256 roles) virtual {
        _checkRoles(roles);
        _;
    }

    /// @dev Marks a function as only callable by the owner or by an account
    /// with `roles`. Checks for ownership first, then lazily checks for roles.
    modifier onlyOwnerOrRoles(uint256 roles) virtual {
        _checkOwnerOrRoles(roles);
        _;
    }

    /// @dev Marks a function as only callable by an account with `roles`
    /// or the owner. Checks for roles first, then lazily checks for ownership.
    modifier onlyRolesOrOwner(uint256 roles) virtual {
        _checkRolesOrOwner(roles);
        _;
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       ROLE CONSTANTS                       */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    // IYKYK

    uint256 internal constant _ROLE_0 = 1 << 0;
    uint256 internal constant _ROLE_1 = 1 << 1;
    uint256 internal constant _ROLE_2 = 1 << 2;
    uint256 internal constant _ROLE_3 = 1 << 3;
    uint256 internal constant _ROLE_4 = 1 << 4;
    uint256 internal constant _ROLE_5 = 1 << 5;
    uint256 internal constant _ROLE_6 = 1 << 6;
    uint256 internal constant _ROLE_7 = 1 << 7;
    uint256 internal constant _ROLE_8 = 1 << 8;
    uint256 internal constant _ROLE_9 = 1 << 9;
    uint256 internal constant _ROLE_10 = 1 << 10;
    uint256 internal constant _ROLE_11 = 1 << 11;
    uint256 internal constant _ROLE_12 = 1 << 12;
    uint256 internal constant _ROLE_13 = 1 << 13;
    uint256 internal constant _ROLE_14 = 1 << 14;
    uint256 internal constant _ROLE_15 = 1 << 15;
    uint256 internal constant _ROLE_16 = 1 << 16;
    uint256 internal constant _ROLE_17 = 1 << 17;
    uint256 internal constant _ROLE_18 = 1 << 18;
    uint256 internal constant _ROLE_19 = 1 << 19;
    uint256 internal constant _ROLE_20 = 1 << 20;
    uint256 internal constant _ROLE_21 = 1 << 21;
    uint256 internal constant _ROLE_22 = 1 << 22;
    uint256 internal constant _ROLE_23 = 1 << 23;
    uint256 internal constant _ROLE_24 = 1 << 24;
    uint256 internal constant _ROLE_25 = 1 << 25;
    uint256 internal constant _ROLE_26 = 1 << 26;
    uint256 internal constant _ROLE_27 = 1 << 27;
    uint256 internal constant _ROLE_28 = 1 << 28;
    uint256 internal constant _ROLE_29 = 1 << 29;
    uint256 internal constant _ROLE_30 = 1 << 30;
    uint256 internal constant _ROLE_31 = 1 << 31;
    uint256 internal constant _ROLE_32 = 1 << 32;
    uint256 internal constant _ROLE_33 = 1 << 33;
    uint256 internal constant _ROLE_34 = 1 << 34;
    uint256 internal constant _ROLE_35 = 1 << 35;
    uint256 internal constant _ROLE_36 = 1 << 36;
    uint256 internal constant _ROLE_37 = 1 << 37;
    uint256 internal constant _ROLE_38 = 1 << 38;
    uint256 internal constant _ROLE_39 = 1 << 39;
    uint256 internal constant _ROLE_40 = 1 << 40;
    uint256 internal constant _ROLE_41 = 1 << 41;
    uint256 internal constant _ROLE_42 = 1 << 42;
    uint256 internal constant _ROLE_43 = 1 << 43;
    uint256 internal constant _ROLE_44 = 1 << 44;
    uint256 internal constant _ROLE_45 = 1 << 45;
    uint256 internal constant _ROLE_46 = 1 << 46;
    uint256 internal constant _ROLE_47 = 1 << 47;
    uint256 internal constant _ROLE_48 = 1 << 48;
    uint256 internal constant _ROLE_49 = 1 << 49;
    uint256 internal constant _ROLE_50 = 1 << 50;
    uint256 internal constant _ROLE_51 = 1 << 51;
    uint256 internal constant _ROLE_52 = 1 << 52;
    uint256 internal constant _ROLE_53 = 1 << 53;
    uint256 internal constant _ROLE_54 = 1 << 54;
    uint256 internal constant _ROLE_55 = 1 << 55;
    uint256 internal constant _ROLE_56 = 1 << 56;
    uint256 internal constant _ROLE_57 = 1 << 57;
    uint256 internal constant _ROLE_58 = 1 << 58;
    uint256 internal constant _ROLE_59 = 1 << 59;
    uint256 internal constant _ROLE_60 = 1 << 60;
    uint256 internal constant _ROLE_61 = 1 << 61;
    uint256 internal constant _ROLE_62 = 1 << 62;
    uint256 internal constant _ROLE_63 = 1 << 63;
    uint256 internal constant _ROLE_64 = 1 << 64;
    uint256 internal constant _ROLE_65 = 1 << 65;
    uint256 internal constant _ROLE_66 = 1 << 66;
    uint256 internal constant _ROLE_67 = 1 << 67;
    uint256 internal constant _ROLE_68 = 1 << 68;
    uint256 internal constant _ROLE_69 = 1 << 69;
    uint256 internal constant _ROLE_70 = 1 << 70;
    uint256 internal constant _ROLE_71 = 1 << 71;
    uint256 internal constant _ROLE_72 = 1 << 72;
    uint256 internal constant _ROLE_73 = 1 << 73;
    uint256 internal constant _ROLE_74 = 1 << 74;
    uint256 internal constant _ROLE_75 = 1 << 75;
    uint256 internal constant _ROLE_76 = 1 << 76;
    uint256 internal constant _ROLE_77 = 1 << 77;
    uint256 internal constant _ROLE_78 = 1 << 78;
    uint256 internal constant _ROLE_79 = 1 << 79;
    uint256 internal constant _ROLE_80 = 1 << 80;
    uint256 internal constant _ROLE_81 = 1 << 81;
    uint256 internal constant _ROLE_82 = 1 << 82;
    uint256 internal constant _ROLE_83 = 1 << 83;
    uint256 internal constant _ROLE_84 = 1 << 84;
    uint256 internal constant _ROLE_85 = 1 << 85;
    uint256 internal constant _ROLE_86 = 1 << 86;
    uint256 internal constant _ROLE_87 = 1 << 87;
    uint256 internal constant _ROLE_88 = 1 << 88;
    uint256 internal constant _ROLE_89 = 1 << 89;
    uint256 internal constant _ROLE_90 = 1 << 90;
    uint256 internal constant _ROLE_91 = 1 << 91;
    uint256 internal constant _ROLE_92 = 1 << 92;
    uint256 internal constant _ROLE_93 = 1 << 93;
    uint256 internal constant _ROLE_94 = 1 << 94;
    uint256 internal constant _ROLE_95 = 1 << 95;
    uint256 internal constant _ROLE_96 = 1 << 96;
    uint256 internal constant _ROLE_97 = 1 << 97;
    uint256 internal constant _ROLE_98 = 1 << 98;
    uint256 internal constant _ROLE_99 = 1 << 99;
    uint256 internal constant _ROLE_100 = 1 << 100;
    uint256 internal constant _ROLE_101 = 1 << 101;
    uint256 internal constant _ROLE_102 = 1 << 102;
    uint256 internal constant _ROLE_103 = 1 << 103;
    uint256 internal constant _ROLE_104 = 1 << 104;
    uint256 internal constant _ROLE_105 = 1 << 105;
    uint256 internal constant _ROLE_106 = 1 << 106;
    uint256 internal constant _ROLE_107 = 1 << 107;
    uint256 internal constant _ROLE_108 = 1 << 108;
    uint256 internal constant _ROLE_109 = 1 << 109;
    uint256 internal constant _ROLE_110 = 1 << 110;
    uint256 internal constant _ROLE_111 = 1 << 111;
    uint256 internal constant _ROLE_112 = 1 << 112;
    uint256 internal constant _ROLE_113 = 1 << 113;
    uint256 internal constant _ROLE_114 = 1 << 114;
    uint256 internal constant _ROLE_115 = 1 << 115;
    uint256 internal constant _ROLE_116 = 1 << 116;
    uint256 internal constant _ROLE_117 = 1 << 117;
    uint256 internal constant _ROLE_118 = 1 << 118;
    uint256 internal constant _ROLE_119 = 1 << 119;
    uint256 internal constant _ROLE_120 = 1 << 120;
    uint256 internal constant _ROLE_121 = 1 << 121;
    uint256 internal constant _ROLE_122 = 1 << 122;
    uint256 internal constant _ROLE_123 = 1 << 123;
    uint256 internal constant _ROLE_124 = 1 << 124;
    uint256 internal constant _ROLE_125 = 1 << 125;
    uint256 internal constant _ROLE_126 = 1 << 126;
    uint256 internal constant _ROLE_127 = 1 << 127;
    uint256 internal constant _ROLE_128 = 1 << 128;
    uint256 internal constant _ROLE_129 = 1 << 129;
    uint256 internal constant _ROLE_130 = 1 << 130;
    uint256 internal constant _ROLE_131 = 1 << 131;
    uint256 internal constant _ROLE_132 = 1 << 132;
    uint256 internal constant _ROLE_133 = 1 << 133;
    uint256 internal constant _ROLE_134 = 1 << 134;
    uint256 internal constant _ROLE_135 = 1 << 135;
    uint256 internal constant _ROLE_136 = 1 << 136;
    uint256 internal constant _ROLE_137 = 1 << 137;
    uint256 internal constant _ROLE_138 = 1 << 138;
    uint256 internal constant _ROLE_139 = 1 << 139;
    uint256 internal constant _ROLE_140 = 1 << 140;
    uint256 internal constant _ROLE_141 = 1 << 141;
    uint256 internal constant _ROLE_142 = 1 << 142;
    uint256 internal constant _ROLE_143 = 1 << 143;
    uint256 internal constant _ROLE_144 = 1 << 144;
    uint256 internal constant _ROLE_145 = 1 << 145;
    uint256 internal constant _ROLE_146 = 1 << 146;
    uint256 internal constant _ROLE_147 = 1 << 147;
    uint256 internal constant _ROLE_148 = 1 << 148;
    uint256 internal constant _ROLE_149 = 1 << 149;
    uint256 internal constant _ROLE_150 = 1 << 150;
    uint256 internal constant _ROLE_151 = 1 << 151;
    uint256 internal constant _ROLE_152 = 1 << 152;
    uint256 internal constant _ROLE_153 = 1 << 153;
    uint256 internal constant _ROLE_154 = 1 << 154;
    uint256 internal constant _ROLE_155 = 1 << 155;
    uint256 internal constant _ROLE_156 = 1 << 156;
    uint256 internal constant _ROLE_157 = 1 << 157;
    uint256 internal constant _ROLE_158 = 1 << 158;
    uint256 internal constant _ROLE_159 = 1 << 159;
    uint256 internal constant _ROLE_160 = 1 << 160;
    uint256 internal constant _ROLE_161 = 1 << 161;
    uint256 internal constant _ROLE_162 = 1 << 162;
    uint256 internal constant _ROLE_163 = 1 << 163;
    uint256 internal constant _ROLE_164 = 1 << 164;
    uint256 internal constant _ROLE_165 = 1 << 165;
    uint256 internal constant _ROLE_166 = 1 << 166;
    uint256 internal constant _ROLE_167 = 1 << 167;
    uint256 internal constant _ROLE_168 = 1 << 168;
    uint256 internal constant _ROLE_169 = 1 << 169;
    uint256 internal constant _ROLE_170 = 1 << 170;
    uint256 internal constant _ROLE_171 = 1 << 171;
    uint256 internal constant _ROLE_172 = 1 << 172;
    uint256 internal constant _ROLE_173 = 1 << 173;
    uint256 internal constant _ROLE_174 = 1 << 174;
    uint256 internal constant _ROLE_175 = 1 << 175;
    uint256 internal constant _ROLE_176 = 1 << 176;
    uint256 internal constant _ROLE_177 = 1 << 177;
    uint256 internal constant _ROLE_178 = 1 << 178;
    uint256 internal constant _ROLE_179 = 1 << 179;
    uint256 internal constant _ROLE_180 = 1 << 180;
    uint256 internal constant _ROLE_181 = 1 << 181;
    uint256 internal constant _ROLE_182 = 1 << 182;
    uint256 internal constant _ROLE_183 = 1 << 183;
    uint256 internal constant _ROLE_184 = 1 << 184;
    uint256 internal constant _ROLE_185 = 1 << 185;
    uint256 internal constant _ROLE_186 = 1 << 186;
    uint256 internal constant _ROLE_187 = 1 << 187;
    uint256 internal constant _ROLE_188 = 1 << 188;
    uint256 internal constant _ROLE_189 = 1 << 189;
    uint256 internal constant _ROLE_190 = 1 << 190;
    uint256 internal constant _ROLE_191 = 1 << 191;
    uint256 internal constant _ROLE_192 = 1 << 192;
    uint256 internal constant _ROLE_193 = 1 << 193;
    uint256 internal constant _ROLE_194 = 1 << 194;
    uint256 internal constant _ROLE_195 = 1 << 195;
    uint256 internal constant _ROLE_196 = 1 << 196;
    uint256 internal constant _ROLE_197 = 1 << 197;
    uint256 internal constant _ROLE_198 = 1 << 198;
    uint256 internal constant _ROLE_199 = 1 << 199;
    uint256 internal constant _ROLE_200 = 1 << 200;
    uint256 internal constant _ROLE_201 = 1 << 201;
    uint256 internal constant _ROLE_202 = 1 << 202;
    uint256 internal constant _ROLE_203 = 1 << 203;
    uint256 internal constant _ROLE_204 = 1 << 204;
    uint256 internal constant _ROLE_205 = 1 << 205;
    uint256 internal constant _ROLE_206 = 1 << 206;
    uint256 internal constant _ROLE_207 = 1 << 207;
    uint256 internal constant _ROLE_208 = 1 << 208;
    uint256 internal constant _ROLE_209 = 1 << 209;
    uint256 internal constant _ROLE_210 = 1 << 210;
    uint256 internal constant _ROLE_211 = 1 << 211;
    uint256 internal constant _ROLE_212 = 1 << 212;
    uint256 internal constant _ROLE_213 = 1 << 213;
    uint256 internal constant _ROLE_214 = 1 << 214;
    uint256 internal constant _ROLE_215 = 1 << 215;
    uint256 internal constant _ROLE_216 = 1 << 216;
    uint256 internal constant _ROLE_217 = 1 << 217;
    uint256 internal constant _ROLE_218 = 1 << 218;
    uint256 internal constant _ROLE_219 = 1 << 219;
    uint256 internal constant _ROLE_220 = 1 << 220;
    uint256 internal constant _ROLE_221 = 1 << 221;
    uint256 internal constant _ROLE_222 = 1 << 222;
    uint256 internal constant _ROLE_223 = 1 << 223;
    uint256 internal constant _ROLE_224 = 1 << 224;
    uint256 internal constant _ROLE_225 = 1 << 225;
    uint256 internal constant _ROLE_226 = 1 << 226;
    uint256 internal constant _ROLE_227 = 1 << 227;
    uint256 internal constant _ROLE_228 = 1 << 228;
    uint256 internal constant _ROLE_229 = 1 << 229;
    uint256 internal constant _ROLE_230 = 1 << 230;
    uint256 internal constant _ROLE_231 = 1 << 231;
    uint256 internal constant _ROLE_232 = 1 << 232;
    uint256 internal constant _ROLE_233 = 1 << 233;
    uint256 internal constant _ROLE_234 = 1 << 234;
    uint256 internal constant _ROLE_235 = 1 << 235;
    uint256 internal constant _ROLE_236 = 1 << 236;
    uint256 internal constant _ROLE_237 = 1 << 237;
    uint256 internal constant _ROLE_238 = 1 << 238;
    uint256 internal constant _ROLE_239 = 1 << 239;
    uint256 internal constant _ROLE_240 = 1 << 240;
    uint256 internal constant _ROLE_241 = 1 << 241;
    uint256 internal constant _ROLE_242 = 1 << 242;
    uint256 internal constant _ROLE_243 = 1 << 243;
    uint256 internal constant _ROLE_244 = 1 << 244;
    uint256 internal constant _ROLE_245 = 1 << 245;
    uint256 internal constant _ROLE_246 = 1 << 246;
    uint256 internal constant _ROLE_247 = 1 << 247;
    uint256 internal constant _ROLE_248 = 1 << 248;
    uint256 internal constant _ROLE_249 = 1 << 249;
    uint256 internal constant _ROLE_250 = 1 << 250;
    uint256 internal constant _ROLE_251 = 1 << 251;
    uint256 internal constant _ROLE_252 = 1 << 252;
    uint256 internal constant _ROLE_253 = 1 << 253;
    uint256 internal constant _ROLE_254 = 1 << 254;
    uint256 internal constant _ROLE_255 = 1 << 255;
}

File 9 of 20 : EIP712.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Contract for EIP-712 typed structured data hashing and signing.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/EIP712.sol)
/// @author Modified from Solbase (https://github.com/Sol-DAO/solbase/blob/main/src/utils/EIP712.sol)
/// @author Modified from OpenZeppelin (https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/cryptography/EIP712.sol)
///
/// @dev Note, this implementation:
/// - Uses `address(this)` for the `verifyingContract` field.
/// - Does NOT use the optional EIP-712 salt.
/// - Does NOT use any EIP-712 extensions.
/// This is for simplicity and to save gas.
/// If you need to customize, please fork / modify accordingly.
abstract contract EIP712 {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                  CONSTANTS AND IMMUTABLES                  */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev `keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)")`.
    bytes32 internal constant _DOMAIN_TYPEHASH =
        0x8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f;

    /// @dev `keccak256("EIP712Domain(string name,string version,address verifyingContract)")`.
    /// This is only used in `_hashTypedDataSansChainId`.
    bytes32 internal constant _DOMAIN_TYPEHASH_SANS_CHAIN_ID =
        0x91ab3d17e3a50a9d89e63fd30b92be7f5336b03b287bb946787a83a9d62a2766;

    uint256 private immutable _cachedThis;
    uint256 private immutable _cachedChainId;
    bytes32 private immutable _cachedNameHash;
    bytes32 private immutable _cachedVersionHash;
    bytes32 private immutable _cachedDomainSeparator;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                        CONSTRUCTOR                         */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Cache the hashes for cheaper runtime gas costs.
    /// In the case of upgradeable contracts (i.e. proxies),
    /// or if the chain id changes due to a hard fork,
    /// the domain separator will be seamlessly calculated on-the-fly.
    constructor() {
        _cachedThis = uint256(uint160(address(this)));
        _cachedChainId = block.chainid;

        string memory name;
        string memory version;
        if (!_domainNameAndVersionMayChange()) (name, version) = _domainNameAndVersion();
        bytes32 nameHash = _domainNameAndVersionMayChange() ? bytes32(0) : keccak256(bytes(name));
        bytes32 versionHash =
            _domainNameAndVersionMayChange() ? bytes32(0) : keccak256(bytes(version));
        _cachedNameHash = nameHash;
        _cachedVersionHash = versionHash;

        bytes32 separator;
        if (!_domainNameAndVersionMayChange()) {
            /// @solidity memory-safe-assembly
            assembly {
                let m := mload(0x40) // Load the free memory pointer.
                mstore(m, _DOMAIN_TYPEHASH)
                mstore(add(m, 0x20), nameHash)
                mstore(add(m, 0x40), versionHash)
                mstore(add(m, 0x60), chainid())
                mstore(add(m, 0x80), address())
                separator := keccak256(m, 0xa0)
            }
        }
        _cachedDomainSeparator = separator;
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                   FUNCTIONS TO OVERRIDE                    */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Please override this function to return the domain name and version.
    /// ```
    ///     function _domainNameAndVersion()
    ///         internal
    ///         pure
    ///         virtual
    ///         returns (string memory name, string memory version)
    ///     {
    ///         name = "Solady";
    ///         version = "1";
    ///     }
    /// ```
    ///
    /// Note: If the returned result may change after the contract has been deployed,
    /// you must override `_domainNameAndVersionMayChange()` to return true.
    function _domainNameAndVersion()
        internal
        view
        virtual
        returns (string memory name, string memory version);

    /// @dev Returns if `_domainNameAndVersion()` may change
    /// after the contract has been deployed (i.e. after the constructor).
    /// Default: false.
    function _domainNameAndVersionMayChange() internal pure virtual returns (bool result) {}

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                     HASHING OPERATIONS                     */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns the EIP-712 domain separator.
    function _domainSeparator() internal view virtual returns (bytes32 separator) {
        if (_domainNameAndVersionMayChange()) {
            separator = _buildDomainSeparator();
        } else {
            separator = _cachedDomainSeparator;
            if (_cachedDomainSeparatorInvalidated()) separator = _buildDomainSeparator();
        }
    }

    /// @dev Returns the hash of the fully encoded EIP-712 message for this domain,
    /// given `structHash`, as defined in
    /// https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct.
    ///
    /// The hash can be used together with {ECDSA-recover} to obtain the signer of a message:
    /// ```
    ///     bytes32 digest = _hashTypedData(keccak256(abi.encode(
    ///         keccak256("Mail(address to,string contents)"),
    ///         mailTo,
    ///         keccak256(bytes(mailContents))
    ///     )));
    ///     address signer = ECDSA.recover(digest, signature);
    /// ```
    function _hashTypedData(bytes32 structHash) internal view virtual returns (bytes32 digest) {
        // We will use `digest` to store the domain separator to save a bit of gas.
        if (_domainNameAndVersionMayChange()) {
            digest = _buildDomainSeparator();
        } else {
            digest = _cachedDomainSeparator;
            if (_cachedDomainSeparatorInvalidated()) digest = _buildDomainSeparator();
        }
        /// @solidity memory-safe-assembly
        assembly {
            // Compute the digest.
            mstore(0x00, 0x1901000000000000) // Store "\x19\x01".
            mstore(0x1a, digest) // Store the domain separator.
            mstore(0x3a, structHash) // Store the struct hash.
            digest := keccak256(0x18, 0x42)
            // Restore the part of the free memory slot that was overwritten.
            mstore(0x3a, 0)
        }
    }

    /// @dev Variant of `_hashTypedData` that excludes the chain ID.
    /// We expect that most contracts will use `_hashTypedData` as the main hash,
    /// and `_hashTypedDataSansChainId` only occasionally for cross-chain workflows.
    /// Thus this is optimized for smaller bytecode size over runtime gas.
    function _hashTypedDataSansChainId(bytes32 structHash)
        internal
        view
        virtual
        returns (bytes32 digest)
    {
        (string memory name, string memory version) = _domainNameAndVersion();
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40) // Load the free memory pointer.
            mstore(0x00, _DOMAIN_TYPEHASH_SANS_CHAIN_ID)
            mstore(0x20, keccak256(add(name, 0x20), mload(name)))
            mstore(0x40, keccak256(add(version, 0x20), mload(version)))
            mstore(0x60, address())
            // Compute the digest.
            mstore(0x20, keccak256(0x00, 0x80)) // Store the domain separator.
            mstore(0x00, 0x1901) // Store "\x19\x01".
            mstore(0x40, structHash) // Store the struct hash.
            digest := keccak256(0x1e, 0x42)
            mstore(0x40, m) // Restore the free memory pointer.
            mstore(0x60, 0) // Restore the zero pointer.
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                    EIP-5267 OPERATIONS                     */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev See: https://eips.ethereum.org/EIPS/eip-5267
    function eip712Domain()
        public
        view
        virtual
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        )
    {
        fields = hex"0f"; // `0b01111`.
        (name, version) = _domainNameAndVersion();
        chainId = block.chainid;
        verifyingContract = address(this);
        salt = salt; // `bytes32(0)`.
        extensions = extensions; // `new uint256[](0)`.
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                      PRIVATE HELPERS                       */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns the EIP-712 domain separator.
    function _buildDomainSeparator() private view returns (bytes32 separator) {
        // We will use `separator` to store the name hash to save a bit of gas.
        bytes32 versionHash;
        if (_domainNameAndVersionMayChange()) {
            (string memory name, string memory version) = _domainNameAndVersion();
            separator = keccak256(bytes(name));
            versionHash = keccak256(bytes(version));
        } else {
            separator = _cachedNameHash;
            versionHash = _cachedVersionHash;
        }
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40) // Load the free memory pointer.
            mstore(m, _DOMAIN_TYPEHASH)
            mstore(add(m, 0x20), separator) // Name hash.
            mstore(add(m, 0x40), versionHash)
            mstore(add(m, 0x60), chainid())
            mstore(add(m, 0x80), address())
            separator := keccak256(m, 0xa0)
        }
    }

    /// @dev Returns if the cached domain separator has been invalidated.
    function _cachedDomainSeparatorInvalidated() private view returns (bool result) {
        uint256 cachedChainId = _cachedChainId;
        uint256 cachedThis = _cachedThis;
        /// @solidity memory-safe-assembly
        assembly {
            result := iszero(and(eq(chainid(), cachedChainId), eq(address(), cachedThis)))
        }
    }
}

File 10 of 20 : Distributor.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.25;

import "solady/utils/MerkleProofLib.sol";
import "solady/utils/ECDSA.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {OwnableRoles} from "solady/auth/OwnableRoles.sol";
import {BaseDistributor} from "./BaseDistributor.sol";
//   ____ _ _
//  / ___| (_) __ _ _   _  ___
// | |   | | |/ _` | | | |/ _ \
// | |___| | | (_| | |_| |  __/
//  \____|_|_|\__, |\__,_|\___|        _               _       __  __  ____
// |  _ \(_)___| |_|_ __(_) |__  _   _| |_ ___  _ __  / |     |  \/  |/ ___|
// | | | | / __| __| '__| | '_ \| | | | __/ _ \| '__| | |_____| |\/| | |
// | |_| | \__ \ |_| |  | | |_) | |_| | || (_) | |    | |_____| |  | | |___
// |____/|_|___/\__|_|  |_|_.__/ \__,_|\__\___/|_|    |_|     |_|  |_|\____|

/// @title Distributor1MC
/// @notice Clique Airdrop contract (Mekle + ECDSA), allows for multiple claims
/// @author Clique (@Clique2046)
/// @author Eillo (@0xEillo)
contract Distributor is BaseDistributor {
    using SafeERC20 for IERC20;

    error InvalidMerkleRoot();

    constructor(address _signer, address _token, address _projectAdmin, address _vault)
        BaseDistributor(_signer, _token, _projectAdmin, _vault)
    {}

    function _execute(address _vault, address _recipient, address _token, bytes32 _configurator, uint256 _amount)
        internal
        override
    {
        if (_configurator != bytes32(uint256(1))) {
            revert InvalidMerkleRoot();
        }

        IERC20 token = IERC20(_token);
        token.safeTransferFrom(_vault, _recipient, _amount);
    }
}

File 11 of 20 : ECDSA.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Gas optimized ECDSA wrapper.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/ECDSA.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/ECDSA.sol)
/// @author Modified from OpenZeppelin (https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/cryptography/ECDSA.sol)
///
/// @dev Note:
/// - The recovery functions use the ecrecover precompile (0x1).
/// - As of Solady version 0.0.68, the `recover` variants will revert upon recovery failure.
///   This is for more safety by default.
///   Use the `tryRecover` variants if you need to get the zero address back
///   upon recovery failure instead.
/// - As of Solady version 0.0.134, all `bytes signature` variants accept both
///   regular 65-byte `(r, s, v)` and EIP-2098 `(r, vs)` short form signatures.
///   See: https://eips.ethereum.org/EIPS/eip-2098
///   This is for calldata efficiency on smart accounts prevalent on L2s.
///
/// WARNING! Do NOT directly use signatures as unique identifiers:
/// - The recovery operations do NOT check if a signature is non-malleable.
/// - Use a nonce in the digest to prevent replay attacks on the same contract.
/// - Use EIP-712 for the digest to prevent replay attacks across different chains and contracts.
///   EIP-712 also enables readable signing of typed data for better user safety.
/// - If you need a unique hash from a signature, please use the `canonicalHash` functions.
library ECDSA {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                         CONSTANTS                          */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The order of the secp256k1 elliptic curve.
    uint256 internal constant N = 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141;

    /// @dev `N/2 + 1`. Used for checking the malleability of the signature.
    uint256 private constant _HALF_N_PLUS_1 =
        0x7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a1;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                        CUSTOM ERRORS                       */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The signature is invalid.
    error InvalidSignature();

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                    RECOVERY OPERATIONS                     */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Recovers the signer's address from a message digest `hash`, and the `signature`.
    function recover(bytes32 hash, bytes memory signature) internal view returns (address result) {
        /// @solidity memory-safe-assembly
        assembly {
            for { let m := mload(0x40) } 1 {
                mstore(0x00, 0x8baa579f) // `InvalidSignature()`.
                revert(0x1c, 0x04)
            } {
                switch mload(signature)
                case 64 {
                    let vs := mload(add(signature, 0x40))
                    mstore(0x20, add(shr(255, vs), 27)) // `v`.
                    mstore(0x60, shr(1, shl(1, vs))) // `s`.
                }
                case 65 {
                    mstore(0x20, byte(0, mload(add(signature, 0x60)))) // `v`.
                    mstore(0x60, mload(add(signature, 0x40))) // `s`.
                }
                default { continue }
                mstore(0x00, hash)
                mstore(0x40, mload(add(signature, 0x20))) // `r`.
                result := mload(staticcall(gas(), 1, 0x00, 0x80, 0x01, 0x20))
                mstore(0x60, 0) // Restore the zero slot.
                mstore(0x40, m) // Restore the free memory pointer.
                // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
                if returndatasize() { break }
            }
        }
    }

    /// @dev Recovers the signer's address from a message digest `hash`, and the `signature`.
    function recoverCalldata(bytes32 hash, bytes calldata signature)
        internal
        view
        returns (address result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            for { let m := mload(0x40) } 1 {
                mstore(0x00, 0x8baa579f) // `InvalidSignature()`.
                revert(0x1c, 0x04)
            } {
                switch signature.length
                case 64 {
                    let vs := calldataload(add(signature.offset, 0x20))
                    mstore(0x20, add(shr(255, vs), 27)) // `v`.
                    mstore(0x40, calldataload(signature.offset)) // `r`.
                    mstore(0x60, shr(1, shl(1, vs))) // `s`.
                }
                case 65 {
                    mstore(0x20, byte(0, calldataload(add(signature.offset, 0x40)))) // `v`.
                    calldatacopy(0x40, signature.offset, 0x40) // Copy `r` and `s`.
                }
                default { continue }
                mstore(0x00, hash)
                result := mload(staticcall(gas(), 1, 0x00, 0x80, 0x01, 0x20))
                mstore(0x60, 0) // Restore the zero slot.
                mstore(0x40, m) // Restore the free memory pointer.
                // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
                if returndatasize() { break }
            }
        }
    }

    /// @dev Recovers the signer's address from a message digest `hash`,
    /// and the EIP-2098 short form signature defined by `r` and `vs`.
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal view returns (address result) {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40) // Cache the free memory pointer.
            mstore(0x00, hash)
            mstore(0x20, add(shr(255, vs), 27)) // `v`.
            mstore(0x40, r)
            mstore(0x60, shr(1, shl(1, vs))) // `s`.
            result := mload(staticcall(gas(), 1, 0x00, 0x80, 0x01, 0x20))
            // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
            if iszero(returndatasize()) {
                mstore(0x00, 0x8baa579f) // `InvalidSignature()`.
                revert(0x1c, 0x04)
            }
            mstore(0x60, 0) // Restore the zero slot.
            mstore(0x40, m) // Restore the free memory pointer.
        }
    }

    /// @dev Recovers the signer's address from a message digest `hash`,
    /// and the signature defined by `v`, `r`, `s`.
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s)
        internal
        view
        returns (address result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40) // Cache the free memory pointer.
            mstore(0x00, hash)
            mstore(0x20, and(v, 0xff))
            mstore(0x40, r)
            mstore(0x60, s)
            result := mload(staticcall(gas(), 1, 0x00, 0x80, 0x01, 0x20))
            // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
            if iszero(returndatasize()) {
                mstore(0x00, 0x8baa579f) // `InvalidSignature()`.
                revert(0x1c, 0x04)
            }
            mstore(0x60, 0) // Restore the zero slot.
            mstore(0x40, m) // Restore the free memory pointer.
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                   TRY-RECOVER OPERATIONS                   */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    // WARNING!
    // These functions will NOT revert upon recovery failure.
    // Instead, they will return the zero address upon recovery failure.
    // It is critical that the returned address is NEVER compared against
    // a zero address (e.g. an uninitialized address variable).

    /// @dev Recovers the signer's address from a message digest `hash`, and the `signature`.
    function tryRecover(bytes32 hash, bytes memory signature)
        internal
        view
        returns (address result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            for { let m := mload(0x40) } 1 {} {
                switch mload(signature)
                case 64 {
                    let vs := mload(add(signature, 0x40))
                    mstore(0x20, add(shr(255, vs), 27)) // `v`.
                    mstore(0x60, shr(1, shl(1, vs))) // `s`.
                }
                case 65 {
                    mstore(0x20, byte(0, mload(add(signature, 0x60)))) // `v`.
                    mstore(0x60, mload(add(signature, 0x40))) // `s`.
                }
                default { break }
                mstore(0x00, hash)
                mstore(0x40, mload(add(signature, 0x20))) // `r`.
                pop(staticcall(gas(), 1, 0x00, 0x80, 0x40, 0x20))
                mstore(0x60, 0) // Restore the zero slot.
                // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
                result := mload(xor(0x60, returndatasize()))
                mstore(0x40, m) // Restore the free memory pointer.
                break
            }
        }
    }

    /// @dev Recovers the signer's address from a message digest `hash`, and the `signature`.
    function tryRecoverCalldata(bytes32 hash, bytes calldata signature)
        internal
        view
        returns (address result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            for { let m := mload(0x40) } 1 {} {
                switch signature.length
                case 64 {
                    let vs := calldataload(add(signature.offset, 0x20))
                    mstore(0x20, add(shr(255, vs), 27)) // `v`.
                    mstore(0x40, calldataload(signature.offset)) // `r`.
                    mstore(0x60, shr(1, shl(1, vs))) // `s`.
                }
                case 65 {
                    mstore(0x20, byte(0, calldataload(add(signature.offset, 0x40)))) // `v`.
                    calldatacopy(0x40, signature.offset, 0x40) // Copy `r` and `s`.
                }
                default { break }
                mstore(0x00, hash)
                pop(staticcall(gas(), 1, 0x00, 0x80, 0x40, 0x20))
                mstore(0x60, 0) // Restore the zero slot.
                // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
                result := mload(xor(0x60, returndatasize()))
                mstore(0x40, m) // Restore the free memory pointer.
                break
            }
        }
    }

    /// @dev Recovers the signer's address from a message digest `hash`,
    /// and the EIP-2098 short form signature defined by `r` and `vs`.
    function tryRecover(bytes32 hash, bytes32 r, bytes32 vs)
        internal
        view
        returns (address result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40) // Cache the free memory pointer.
            mstore(0x00, hash)
            mstore(0x20, add(shr(255, vs), 27)) // `v`.
            mstore(0x40, r)
            mstore(0x60, shr(1, shl(1, vs))) // `s`.
            pop(staticcall(gas(), 1, 0x00, 0x80, 0x40, 0x20))
            mstore(0x60, 0) // Restore the zero slot.
            // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
            result := mload(xor(0x60, returndatasize()))
            mstore(0x40, m) // Restore the free memory pointer.
        }
    }

    /// @dev Recovers the signer's address from a message digest `hash`,
    /// and the signature defined by `v`, `r`, `s`.
    function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s)
        internal
        view
        returns (address result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40) // Cache the free memory pointer.
            mstore(0x00, hash)
            mstore(0x20, and(v, 0xff))
            mstore(0x40, r)
            mstore(0x60, s)
            pop(staticcall(gas(), 1, 0x00, 0x80, 0x40, 0x20))
            mstore(0x60, 0) // Restore the zero slot.
            // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
            result := mload(xor(0x60, returndatasize()))
            mstore(0x40, m) // Restore the free memory pointer.
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                     HASHING OPERATIONS                     */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns an Ethereum Signed Message, created from a `hash`.
    /// This produces a hash corresponding to the one signed with the
    /// [`eth_sign`](https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign)
    /// JSON-RPC method as part of EIP-191.
    function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x20, hash) // Store into scratch space for keccak256.
            mstore(0x00, "\x00\x00\x00\x00\x19Ethereum Signed Message:\n32") // 28 bytes.
            result := keccak256(0x04, 0x3c) // `32 * 2 - (32 - 28) = 60 = 0x3c`.
        }
    }

    /// @dev Returns an Ethereum Signed Message, created from `s`.
    /// This produces a hash corresponding to the one signed with the
    /// [`eth_sign`](https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign)
    /// JSON-RPC method as part of EIP-191.
    /// Note: Supports lengths of `s` up to 999999 bytes.
    function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            let sLength := mload(s)
            let o := 0x20
            mstore(o, "\x19Ethereum Signed Message:\n") // 26 bytes, zero-right-padded.
            mstore(0x00, 0x00)
            // Convert the `s.length` to ASCII decimal representation: `base10(s.length)`.
            for { let temp := sLength } 1 {} {
                o := sub(o, 1)
                mstore8(o, add(48, mod(temp, 10)))
                temp := div(temp, 10)
                if iszero(temp) { break }
            }
            let n := sub(0x3a, o) // Header length: `26 + 32 - o`.
            // Throw an out-of-offset error (consumes all gas) if the header exceeds 32 bytes.
            returndatacopy(returndatasize(), returndatasize(), gt(n, 0x20))
            mstore(s, or(mload(0x00), mload(n))) // Temporarily store the header.
            result := keccak256(add(s, sub(0x20, n)), add(n, sLength))
            mstore(s, sLength) // Restore the length.
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                  CANONICAL HASH FUNCTIONS                  */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    // The following functions returns the hash of the signature in it's canonicalized format,
    // which is the 65-byte `abi.encodePacked(r, s, uint8(v))`, where `v` is either 27 or 28.
    // If `s` is greater than `N / 2` then it will be converted to `N - s`
    // and the `v` value will be flipped.
    // If the signature has an invalid length, or if `v` is invalid,
    // a uniquely corrupt hash will be returned.
    // These functions are useful for "poor-mans-VRF".

    /// @dev Returns the canonical hash of `signature`.
    function canonicalHash(bytes memory signature) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            let l := mload(signature)
            for {} 1 {} {
                mstore(0x00, mload(add(signature, 0x20))) // `r`.
                let s := mload(add(signature, 0x40))
                let v := mload(add(signature, 0x41))
                if eq(l, 64) {
                    v := add(shr(255, s), 27)
                    s := shr(1, shl(1, s))
                }
                if iszero(lt(s, _HALF_N_PLUS_1)) {
                    v := xor(v, 7)
                    s := sub(N, s)
                }
                mstore(0x21, v)
                mstore(0x20, s)
                result := keccak256(0x00, 0x41)
                mstore(0x21, 0) // Restore the overwritten part of the free memory pointer.
                break
            }

            // If the length is neither 64 nor 65, return a uniquely corrupted hash.
            if iszero(lt(sub(l, 64), 2)) {
                // `bytes4(keccak256("InvalidSignatureLength"))`.
                result := xor(keccak256(add(signature, 0x20), l), 0xd62f1ab2)
            }
        }
    }

    /// @dev Returns the canonical hash of `signature`.
    function canonicalHashCalldata(bytes calldata signature)
        internal
        pure
        returns (bytes32 result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            for {} 1 {} {
                mstore(0x00, calldataload(signature.offset)) // `r`.
                let s := calldataload(add(signature.offset, 0x20))
                let v := calldataload(add(signature.offset, 0x21))
                if eq(signature.length, 64) {
                    v := add(shr(255, s), 27)
                    s := shr(1, shl(1, s))
                }
                if iszero(lt(s, _HALF_N_PLUS_1)) {
                    v := xor(v, 7)
                    s := sub(N, s)
                }
                mstore(0x21, v)
                mstore(0x20, s)
                result := keccak256(0x00, 0x41)
                mstore(0x21, 0) // Restore the overwritten part of the free memory pointer.
                break
            }
            // If the length is neither 64 nor 65, return a uniquely corrupted hash.
            if iszero(lt(sub(signature.length, 64), 2)) {
                calldatacopy(mload(0x40), signature.offset, signature.length)
                // `bytes4(keccak256("InvalidSignatureLength"))`.
                result := xor(keccak256(mload(0x40), signature.length), 0xd62f1ab2)
            }
        }
    }

    /// @dev Returns the canonical hash of `signature`.
    function canonicalHash(bytes32 r, bytes32 vs) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, r) // `r`.
            let v := add(shr(255, vs), 27)
            let s := shr(1, shl(1, vs))
            mstore(0x21, v)
            mstore(0x20, s)
            result := keccak256(0x00, 0x41)
            mstore(0x21, 0) // Restore the overwritten part of the free memory pointer.
        }
    }

    /// @dev Returns the canonical hash of `signature`.
    function canonicalHash(uint8 v, bytes32 r, bytes32 s) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, r) // `r`.
            if iszero(lt(s, _HALF_N_PLUS_1)) {
                v := xor(v, 7)
                s := sub(N, s)
            }
            mstore(0x21, v)
            mstore(0x20, s)
            result := keccak256(0x00, 0x41)
            mstore(0x21, 0) // Restore the overwritten part of the free memory pointer.
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                   EMPTY CALLDATA HELPERS                   */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns an empty calldata bytes.
    function emptySignature() internal pure returns (bytes calldata signature) {
        /// @solidity memory-safe-assembly
        assembly {
            signature.length := 0
        }
    }
}

File 12 of 20 : VestedDistributor.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.25;

import "solady/utils/ECDSA.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {OwnableRoles} from "solady/auth/OwnableRoles.sol";
import {StreamConfig, ICliqueLock} from "../ICliqueLock.sol";
import {BaseDistributor} from "./BaseDistributor.sol";

interface IVestingConfigurator {
    function makeStreamConfig(address _recipient, uint256 _amount)
        external
        view
        returns (StreamConfig memory streamConfig);
}

/// @title Vested Distributor
/// @author Clique (@Clique2046)
/// @author Alan (@alannotnerd)
contract VestedDistributor is BaseDistributor {
    using SafeERC20 for IERC20;

    address public immutable lock;

    error MismatchedToken(address actual, address expected);

    constructor(address _signer, address _token, address _projectAdmin, address _vault, address _lock)
        BaseDistributor(_signer, _token, _projectAdmin, _vault)
    {
        lock = _lock;
    }

    function _execute(address _vault, address _recipient, address _token, bytes32 _configurator, uint256 _amount)
        internal
        override
    {
        IERC20 token = IERC20(_token);
        address configurator = address(uint160(uint256(_configurator)));
        StreamConfig memory _streamConfig = IVestingConfigurator(configurator).makeStreamConfig(_recipient, _amount);
        if (_streamConfig.token != _token) revert MismatchedToken(_streamConfig.token, _token);

        token.safeTransferFrom(_vault, address(this), _streamConfig.amount);
        token.approve(lock, _streamConfig.amount);

        ICliqueLock(lock).createStream(_streamConfig);
    }
}

File 13 of 20 : IERC1363.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC1363.sol)

pragma solidity ^0.8.20;

import {IERC20} from "./IERC20.sol";
import {IERC165} from "./IERC165.sol";

/**
 * @title IERC1363
 * @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363].
 *
 * Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract
 * after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction.
 */
interface IERC1363 is IERC20, IERC165 {
    /*
     * Note: the ERC-165 identifier for this interface is 0xb0202a11.
     * 0xb0202a11 ===
     *   bytes4(keccak256('transferAndCall(address,uint256)')) ^
     *   bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256,bytes)'))
     */

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value) external returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @param data Additional data with no specified format, sent in call to `spender`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool);
}

File 14 of 20 : CallContextChecker.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Call context checker mixin.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/CallContextChecker.sol)
contract CallContextChecker {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       CUSTOM ERRORS                        */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The call is from an unauthorized call context.
    error UnauthorizedCallContext();

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                         IMMUTABLES                         */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev For checking if the context is a delegate call.
    ///
    /// Note: To enable use cases with an immutable default implementation in the bytecode,
    /// (see: ERC6551Proxy), we don't require that the proxy address must match the
    /// value stored in the implementation slot, which may not be initialized.
    uint256 private immutable __self = uint256(uint160(address(this)));

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                    CALL CONTEXT CHECKS                     */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    // A proxy call can be either via a `delegatecall` to an implementation,
    // or a 7702 call on an authority that points to a delegation.

    /// @dev Returns whether the current call context is on a EIP7702 authority
    /// (i.e. externally owned account).
    function _onEIP7702Authority() internal view virtual returns (bool result) {
        /// @solidity memory-safe-assembly
        assembly {
            extcodecopy(address(), 0x00, 0x00, 0x20)
            // Note: Checking that it starts with hex"ef01" is the most general and futureproof.
            // 7702 bytecode is `abi.encodePacked(hex"ef01", uint8(version), address(delegation))`.
            result := eq(0xef01, shr(240, mload(0x00)))
        }
    }

    /// @dev Returns the implementation of this contract.
    function _selfImplementation() internal view virtual returns (address) {
        return address(uint160(__self));
    }

    /// @dev Returns whether the current call context is on the implementation itself.
    function _onImplementation() internal view virtual returns (bool) {
        return __self == uint160(address(this));
    }

    /// @dev Requires that the current call context is performed via a EIP7702 authority.
    function _checkOnlyEIP7702Authority() internal view virtual {
        if (!_onEIP7702Authority()) _revertUnauthorizedCallContext();
    }

    /// @dev Requires that the current call context is performed via a proxy.
    function _checkOnlyProxy() internal view virtual {
        if (_onImplementation()) _revertUnauthorizedCallContext();
    }

    /// @dev Requires that the current call context is NOT performed via a proxy.
    /// This is the opposite of `checkOnlyProxy`.
    function _checkNotDelegated() internal view virtual {
        if (!_onImplementation()) _revertUnauthorizedCallContext();
    }

    /// @dev Requires that the current call context is performed via a EIP7702 authority.
    modifier onlyEIP7702Authority() virtual {
        _checkOnlyEIP7702Authority();
        _;
    }

    /// @dev Requires that the current call context is performed via a proxy.
    modifier onlyProxy() virtual {
        _checkOnlyProxy();
        _;
    }

    /// @dev Requires that the current call context is NOT performed via a proxy.
    /// This is the opposite of `onlyProxy`.
    modifier notDelegated() virtual {
        _checkNotDelegated();
        _;
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                      PRIVATE HELPERS                       */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    function _revertUnauthorizedCallContext() private pure {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, 0x9f03a026) // `UnauthorizedCallContext()`.
            revert(0x1c, 0x04)
        }
    }
}

File 15 of 20 : Ownable.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Simple single owner authorization mixin.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/auth/Ownable.sol)
///
/// @dev Note:
/// This implementation does NOT auto-initialize the owner to `msg.sender`.
/// You MUST call the `_initializeOwner` in the constructor / initializer.
///
/// While the ownable portion follows
/// [EIP-173](https://eips.ethereum.org/EIPS/eip-173) for compatibility,
/// the nomenclature for the 2-step ownership handover may be unique to this codebase.
abstract contract Ownable {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       CUSTOM ERRORS                        */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The caller is not authorized to call the function.
    error Unauthorized();

    /// @dev The `newOwner` cannot be the zero address.
    error NewOwnerIsZeroAddress();

    /// @dev The `pendingOwner` does not have a valid handover request.
    error NoHandoverRequest();

    /// @dev Cannot double-initialize.
    error AlreadyInitialized();

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                           EVENTS                           */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The ownership is transferred from `oldOwner` to `newOwner`.
    /// This event is intentionally kept the same as OpenZeppelin's Ownable to be
    /// compatible with indexers and [EIP-173](https://eips.ethereum.org/EIPS/eip-173),
    /// despite it not being as lightweight as a single argument event.
    event OwnershipTransferred(address indexed oldOwner, address indexed newOwner);

    /// @dev An ownership handover to `pendingOwner` has been requested.
    event OwnershipHandoverRequested(address indexed pendingOwner);

    /// @dev The ownership handover to `pendingOwner` has been canceled.
    event OwnershipHandoverCanceled(address indexed pendingOwner);

    /// @dev `keccak256(bytes("OwnershipTransferred(address,address)"))`.
    uint256 private constant _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE =
        0x8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0;

    /// @dev `keccak256(bytes("OwnershipHandoverRequested(address)"))`.
    uint256 private constant _OWNERSHIP_HANDOVER_REQUESTED_EVENT_SIGNATURE =
        0xdbf36a107da19e49527a7176a1babf963b4b0ff8cde35ee35d6cd8f1f9ac7e1d;

    /// @dev `keccak256(bytes("OwnershipHandoverCanceled(address)"))`.
    uint256 private constant _OWNERSHIP_HANDOVER_CANCELED_EVENT_SIGNATURE =
        0xfa7b8eab7da67f412cc9575ed43464468f9bfbae89d1675917346ca6d8fe3c92;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                          STORAGE                           */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The owner slot is given by:
    /// `bytes32(~uint256(uint32(bytes4(keccak256("_OWNER_SLOT_NOT")))))`.
    /// It is intentionally chosen to be a high value
    /// to avoid collision with lower slots.
    /// The choice of manual storage layout is to enable compatibility
    /// with both regular and upgradeable contracts.
    bytes32 internal constant _OWNER_SLOT =
        0xffffffffffffffffffffffffffffffffffffffffffffffffffffffff74873927;

    /// The ownership handover slot of `newOwner` is given by:
    /// ```
    ///     mstore(0x00, or(shl(96, user), _HANDOVER_SLOT_SEED))
    ///     let handoverSlot := keccak256(0x00, 0x20)
    /// ```
    /// It stores the expiry timestamp of the two-step ownership handover.
    uint256 private constant _HANDOVER_SLOT_SEED = 0x389a75e1;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                     INTERNAL FUNCTIONS                     */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Override to return true to make `_initializeOwner` prevent double-initialization.
    function _guardInitializeOwner() internal pure virtual returns (bool guard) {}

    /// @dev Initializes the owner directly without authorization guard.
    /// This function must be called upon initialization,
    /// regardless of whether the contract is upgradeable or not.
    /// This is to enable generalization to both regular and upgradeable contracts,
    /// and to save gas in case the initial owner is not the caller.
    /// For performance reasons, this function will not check if there
    /// is an existing owner.
    function _initializeOwner(address newOwner) internal virtual {
        if (_guardInitializeOwner()) {
            /// @solidity memory-safe-assembly
            assembly {
                let ownerSlot := _OWNER_SLOT
                if sload(ownerSlot) {
                    mstore(0x00, 0x0dc149f0) // `AlreadyInitialized()`.
                    revert(0x1c, 0x04)
                }
                // Clean the upper 96 bits.
                newOwner := shr(96, shl(96, newOwner))
                // Store the new value.
                sstore(ownerSlot, or(newOwner, shl(255, iszero(newOwner))))
                // Emit the {OwnershipTransferred} event.
                log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, 0, newOwner)
            }
        } else {
            /// @solidity memory-safe-assembly
            assembly {
                // Clean the upper 96 bits.
                newOwner := shr(96, shl(96, newOwner))
                // Store the new value.
                sstore(_OWNER_SLOT, newOwner)
                // Emit the {OwnershipTransferred} event.
                log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, 0, newOwner)
            }
        }
    }

    /// @dev Sets the owner directly without authorization guard.
    function _setOwner(address newOwner) internal virtual {
        if (_guardInitializeOwner()) {
            /// @solidity memory-safe-assembly
            assembly {
                let ownerSlot := _OWNER_SLOT
                // Clean the upper 96 bits.
                newOwner := shr(96, shl(96, newOwner))
                // Emit the {OwnershipTransferred} event.
                log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, sload(ownerSlot), newOwner)
                // Store the new value.
                sstore(ownerSlot, or(newOwner, shl(255, iszero(newOwner))))
            }
        } else {
            /// @solidity memory-safe-assembly
            assembly {
                let ownerSlot := _OWNER_SLOT
                // Clean the upper 96 bits.
                newOwner := shr(96, shl(96, newOwner))
                // Emit the {OwnershipTransferred} event.
                log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, sload(ownerSlot), newOwner)
                // Store the new value.
                sstore(ownerSlot, newOwner)
            }
        }
    }

    /// @dev Throws if the sender is not the owner.
    function _checkOwner() internal view virtual {
        /// @solidity memory-safe-assembly
        assembly {
            // If the caller is not the stored owner, revert.
            if iszero(eq(caller(), sload(_OWNER_SLOT))) {
                mstore(0x00, 0x82b42900) // `Unauthorized()`.
                revert(0x1c, 0x04)
            }
        }
    }

    /// @dev Returns how long a two-step ownership handover is valid for in seconds.
    /// Override to return a different value if needed.
    /// Made internal to conserve bytecode. Wrap it in a public function if needed.
    function _ownershipHandoverValidFor() internal view virtual returns (uint64) {
        return 48 * 3600;
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                  PUBLIC UPDATE FUNCTIONS                   */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Allows the owner to transfer the ownership to `newOwner`.
    function transferOwnership(address newOwner) public payable virtual onlyOwner {
        /// @solidity memory-safe-assembly
        assembly {
            if iszero(shl(96, newOwner)) {
                mstore(0x00, 0x7448fbae) // `NewOwnerIsZeroAddress()`.
                revert(0x1c, 0x04)
            }
        }
        _setOwner(newOwner);
    }

    /// @dev Allows the owner to renounce their ownership.
    function renounceOwnership() public payable virtual onlyOwner {
        _setOwner(address(0));
    }

    /// @dev Request a two-step ownership handover to the caller.
    /// The request will automatically expire in 48 hours (172800 seconds) by default.
    function requestOwnershipHandover() public payable virtual {
        unchecked {
            uint256 expires = block.timestamp + _ownershipHandoverValidFor();
            /// @solidity memory-safe-assembly
            assembly {
                // Compute and set the handover slot to `expires`.
                mstore(0x0c, _HANDOVER_SLOT_SEED)
                mstore(0x00, caller())
                sstore(keccak256(0x0c, 0x20), expires)
                // Emit the {OwnershipHandoverRequested} event.
                log2(0, 0, _OWNERSHIP_HANDOVER_REQUESTED_EVENT_SIGNATURE, caller())
            }
        }
    }

    /// @dev Cancels the two-step ownership handover to the caller, if any.
    function cancelOwnershipHandover() public payable virtual {
        /// @solidity memory-safe-assembly
        assembly {
            // Compute and set the handover slot to 0.
            mstore(0x0c, _HANDOVER_SLOT_SEED)
            mstore(0x00, caller())
            sstore(keccak256(0x0c, 0x20), 0)
            // Emit the {OwnershipHandoverCanceled} event.
            log2(0, 0, _OWNERSHIP_HANDOVER_CANCELED_EVENT_SIGNATURE, caller())
        }
    }

    /// @dev Allows the owner to complete the two-step ownership handover to `pendingOwner`.
    /// Reverts if there is no existing ownership handover requested by `pendingOwner`.
    function completeOwnershipHandover(address pendingOwner) public payable virtual onlyOwner {
        /// @solidity memory-safe-assembly
        assembly {
            // Compute and set the handover slot to 0.
            mstore(0x0c, _HANDOVER_SLOT_SEED)
            mstore(0x00, pendingOwner)
            let handoverSlot := keccak256(0x0c, 0x20)
            // If the handover does not exist, or has expired.
            if gt(timestamp(), sload(handoverSlot)) {
                mstore(0x00, 0x6f5e8818) // `NoHandoverRequest()`.
                revert(0x1c, 0x04)
            }
            // Set the handover slot to 0.
            sstore(handoverSlot, 0)
        }
        _setOwner(pendingOwner);
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                   PUBLIC READ FUNCTIONS                    */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns the owner of the contract.
    function owner() public view virtual returns (address result) {
        /// @solidity memory-safe-assembly
        assembly {
            result := sload(_OWNER_SLOT)
        }
    }

    /// @dev Returns the expiry timestamp for the two-step ownership handover to `pendingOwner`.
    function ownershipHandoverExpiresAt(address pendingOwner)
        public
        view
        virtual
        returns (uint256 result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            // Compute the handover slot.
            mstore(0x0c, _HANDOVER_SLOT_SEED)
            mstore(0x00, pendingOwner)
            // Load the handover slot.
            result := sload(keccak256(0x0c, 0x20))
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                         MODIFIERS                          */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Marks a function as only callable by the owner.
    modifier onlyOwner() virtual {
        _checkOwner();
        _;
    }
}

File 16 of 20 : BaseDistributor.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.25;

import "solady/utils/ECDSA.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {OwnableRoles} from "solady/auth/OwnableRoles.sol";
import {StreamConfig, ICliqueLock} from "../ICliqueLock.sol";

/// @title  Base Distributor
/// @author Clique (@Clique2046)
/// @author Alan (@alannotnerd)
abstract contract BaseDistributor is OwnableRoles {
    using SafeERC20 for IERC20;

    // token to be airdroppped
    address public token;
    // address signing the claims
    address public signer;
    // vault address
    address public vault;
    // whether the airdrop is active
    bool public active = false;

    mapping(bytes32 => mapping(address => uint256)) public claimed;
    mapping(bytes32 => bytes32) public merkleConfiguration;

    // errors
    error AlreadyClaimed();
    error InvalidSignature();
    error NotActive();
    error ZeroAddress();
    error InvalidMerkleProof(bytes32 root);
    error WithdrawFailed();
    error IncorrectFee();

    event AirdropClaimed(address indexed account, uint256 amount);
    event MerkleConfigurationUpdate(bytes32 indexed root, bytes32 indexed configurator);
    event Withdraw(address indexed to, uint256 amount);
    event FeeSet(uint256 fee);
    event VaultSet(address indexed vault);

    uint256 public constant PROJECT_ADMIN = _ROLE_0;

    /// @notice Construct a new Claim contract
    /// @param _signer address that can sign messages
    /// @param _token address of the token that will be claimed
    /// @param _projectAdmin address that can set the signer and claim root
    constructor(address _signer, address _token, address _projectAdmin, address _vault) {
        if (_token == address(0)) revert ZeroAddress();
        signer = _signer;
        token = _token;
        vault = _vault;
        _initializeOwner(msg.sender);
        _setRoles(_projectAdmin, PROJECT_ADMIN);
    }

    /// @notice Modifier to check if the airdrop is active
    modifier whenActive() {
        if (!active) revert NotActive();
        _;
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                      ADMIN FUNCTIONS                       */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @notice Set the signer
    /// @param _signer address that can sign messages
    function setSigner(address _signer) external onlyRoles(PROJECT_ADMIN) {
        signer = _signer;
    }

    /// @notice Set the claim root
    /// @param _claimRoot root of the merkle tree
    function setClaimRoot(bytes32 _claimRoot, bytes32 _configurator) external onlyRoles(PROJECT_ADMIN) {
        merkleConfiguration[_claimRoot] = _configurator;
        emit MerkleConfigurationUpdate(_claimRoot, _configurator);
    }

    /// @notice Set the vault
    /// @param _vault address of the vault
    function setVault(address _vault) external onlyRoles(PROJECT_ADMIN) {
        vault = _vault;
        emit VaultSet(_vault);
    }

    /// @notice Toggle the active state
    function toggleActive() external onlyRoles(PROJECT_ADMIN) {
        active = !active;
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                      FEE FUNCTIONS                         */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
    /// @notice Withdraw the fee
    /// @dev Only callable by the owner
    function withdrawFee(address _recipient) external onlyOwner {
        uint256 _balance = address(this).balance;
        if (_balance > 0) {
            (bool _success,) = payable(_recipient).call{value: _balance}("");
            if (!_success) revert WithdrawFailed();
            emit Withdraw(_recipient, _balance);
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                   EXTERNAL FUNCTIONS                       */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @notice Claim airdrop tokens. Checks for both merkle proof
    //          and signature validation
    /// @param _proof merkle proof of the claim
    /// @param _signature signature of the claim
    /// @param _amount amount of tokens to claim
    /// @param _onBehalfOf address to claim on behalf of
    function claim(bytes32[] calldata _proof, bytes calldata _signature, uint256 _amount, address _onBehalfOf)
        external
        payable
        whenActive
    {
        (bytes32 _root, bytes32 _configurator) = _rootCheck(_proof, _amount, _onBehalfOf);

        uint256 _claimedBlock = claimed[_root][_onBehalfOf];
        if (_claimedBlock != 0) {
            revert AlreadyClaimed();
        } else {
            claimed[_root][_onBehalfOf] = block.number;
        }

        address _signer = signer;

        // if the signer is not set, skip signature check
        if (_signer != address(0)) {
            _signatureCheck(_amount, _onBehalfOf, _signature, _root, _signer);
        }

        _execute(vault, _onBehalfOf, token, _configurator, _amount);

        emit AirdropClaimed(_onBehalfOf, _amount);
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       PRIVATE FUNCTIONS                    */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @notice Internal function to execute the claim
    /// @param _vault vault address
    /// @param _recipient recipient address
    /// @param _token token address
    /// @param _configurator configurator address
    /// @param _amount amount of tokens to claim
    function _execute(address _vault, address _recipient, address _token, bytes32 _configurator, uint256 _amount)
        internal
        virtual;

    /// @notice Internal function to check the merkle proof
    /// @param _proof merkle proof of the claim
    /// @param _amount amount of tokens to claim
    /// @param _onBehalfOf address to claim on behalf of
    function _rootCheck(bytes32[] calldata _proof, uint256 _amount, address _onBehalfOf)
        internal
        view
        returns (bytes32 root, bytes32 configurator)
    {
        root = recover(_proof, keccak256(abi.encodePacked(_onBehalfOf, _amount)));
        configurator = merkleConfiguration[root];
        if (configurator == bytes32(0)) revert InvalidMerkleProof(root);
    }

    /// @notice Internal function to check the signature
    /// @param _amount amount of tokens to claim
    /// @param _onBehalfOf address to claim on behalf of
    /// @param _signature signature of the claim
    /// @param _root root of the merkle tree
    /// @param _signer signer to check
    function _signatureCheck(
        uint256 _amount,
        address _onBehalfOf,
        bytes calldata _signature,
        bytes32 _root,
        address _signer
    ) internal view {
        if (_signature.length == 0) revert InvalidSignature();

        bytes32 messageHash = keccak256(abi.encodePacked(_onBehalfOf, _amount, _root, address(this), block.chainid));
        bytes32 prefixedHash = ECDSA.toEthSignedMessageHash(messageHash);
        address recoveredSigner = ECDSA.recoverCalldata(prefixedHash, _signature);

        if (recoveredSigner != _signer) revert InvalidSignature();
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*            MERKLE PROOF VERIFICATION OPERATIONS            */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns whether `leaf` exists in the Merkle tree with `root`, given `proof`.
    function recover(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32 root) {
        /// @solidity memory-safe-assembly
        assembly {
            if mload(proof) {
                // Initialize `offset` to the offset of `proof` elements in memory.
                let offset := add(proof, 0x20)
                // Left shift by 5 is equivalent to multiplying by 0x20.
                let end := add(offset, shl(5, mload(proof)))
                // Iterate over proof elements to compute root hash.
                for {} 1 {} {
                    // Slot of `leaf` in scratch space.
                    // If the condition is true: 0x20, otherwise: 0x00.
                    let scratch := shl(5, gt(leaf, mload(offset)))
                    // Store elements to hash contiguously in scratch space.
                    // Scratch space is 64 bytes (0x00 - 0x3f) and both elements are 32 bytes.
                    mstore(scratch, leaf)
                    mstore(xor(scratch, 0x20), mload(offset))
                    // Reuse `leaf` to store the hash to reduce stack operations.
                    leaf := keccak256(0x00, 0x40)
                    offset := add(offset, 0x20)
                    if iszero(lt(offset, end)) { break }
                }
            }
            root := leaf
        }
    }
}

File 17 of 20 : ICliqueLock.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.25;

struct StreamConfig {
    address recipient;
    address revokeAuthority;
    address token;
    uint256 amount;
    uint256 startTime;
    uint256 cliffTime;
    uint256 endTime;
    uint256 startUnlockPercentage;
    uint256 cliffUnlockPercentage;
    uint256 pieceDuration;
    address verifier;
    uint256 id;
}

/**
 * @dev Stream struct containing all parameters for a token stream
 * @param recipient Address that will receive the streamed tokens
 * @param revokeAuthority Address with permission to revoke the stream
 * @param token Address of the ERC20 token being streamed
 * @param amount Total amount of tokens in the stream
 * @param claimedAmount Amount of tokens already claimed
 * @param startTime Timestamp when the stream begins
 * @param cliffTime Timestamp when the cliff period ends
 * @param endTime Timestamp when the stream ends
 * @param startUnlockPercentage Percentage of tokens unlocked at start (18 decimals)
 * @param cliffUnlockPercentage Percentage of tokens unlocked at cliff (18 decimals)
 * @param pieceDuration Duration of each vesting piece (0 for linear vesting)
 */
struct Stream {
    address recipient;
    address revokeAuthority;
    address token;
    uint256 amount;
    uint256 claimedAmount;
    uint256 startTime;
    uint256 cliffTime;
    uint256 endTime;
    uint256 startUnlockPercentage;
    uint256 cliffUnlockPercentage;
    uint256 pieceDuration;
}

struct Badge {
    address verifier;
    uint256 id;
}

interface IVerifier {
    function ownerOf(uint256 id) external view returns (address);
}

interface ICliqueLock {
    // EXTERNAL FUNCTIONS - STREAM CREATION
    /**
     * @notice Creates a stream using standard ERC20 approve
     * @dev Requires prior approval of token transfer
     * @param config StreamConfig struct containing the stream parameters
     * @return streamId Unique identifier of the created stream
     */
    function createStream(StreamConfig calldata config) external returns (uint256 streamId);
}

File 18 of 20 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../token/ERC20/IERC20.sol";

File 19 of 20 : IERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol)

pragma solidity ^0.8.20;

import {IERC165} from "../utils/introspection/IERC165.sol";

File 20 of 20 : IERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[ERC].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

Settings
{
  "remappings": [
    "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
    "erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
    "forge-std/=lib/forge-std/src/",
    "halmos-cheatcodes/=lib/openzeppelin-contracts/lib/halmos-cheatcodes/src/",
    "openzeppelin-contracts/=lib/openzeppelin-contracts/",
    "solady/=lib/solady/src/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "ipfs",
    "appendCBOR": true
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "cancun",
  "viaIR": true,
  "libraries": {}
}

Contract Security Audit

Contract ABI

API
[{"inputs":[],"name":"AlreadyInitialized","type":"error"},{"inputs":[],"name":"DeadlineReached","type":"error"},{"inputs":[],"name":"InvalidInitialization","type":"error"},{"inputs":[],"name":"NewOwnerIsZeroAddress","type":"error"},{"inputs":[],"name":"NoHandoverRequest","type":"error"},{"inputs":[],"name":"NotInitializing","type":"error"},{"inputs":[],"name":"Unauthorized","type":"error"},{"inputs":[],"name":"UnauthorizedCallContext","type":"error"},{"inputs":[],"name":"UpgradeFailed","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"_token","type":"address"},{"indexed":true,"internalType":"address","name":"distributor","type":"address"},{"indexed":false,"internalType":"bytes","name":"signature","type":"bytes"}],"name":"DistributorCreated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint64","name":"version","type":"uint64"}],"name":"Initialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"pendingOwner","type":"address"}],"name":"OwnershipHandoverCanceled","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"pendingOwner","type":"address"}],"name":"OwnershipHandoverRequested","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"oldOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"uint256","name":"roles","type":"uint256"}],"name":"RolesUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"implementation","type":"address"}],"name":"Upgraded","type":"event"},{"inputs":[],"name":"ADMIN","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"AIDROP_MANAGER","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"cancelOwnershipHandover","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"pendingOwner","type":"address"}],"name":"completeOwnershipHandover","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"_token","type":"address"},{"internalType":"address","name":"_vault","type":"address"},{"internalType":"address","name":"_signer","type":"address"},{"internalType":"uint256","name":"_fee","type":"uint256"},{"internalType":"uint256","name":"_deadline","type":"uint256"},{"internalType":"bytes","name":"_signature","type":"bytes"}],"name":"createDistributor","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_token","type":"address"},{"internalType":"address","name":"_vault","type":"address"},{"internalType":"address","name":"_signer","type":"address"},{"internalType":"address","name":"_lock","type":"address"},{"internalType":"uint256","name":"_fee","type":"uint256"},{"internalType":"uint256","name":"_deadline","type":"uint256"},{"internalType":"bytes","name":"_signature","type":"bytes"}],"name":"createVestedDistributor","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"eip712Domain","outputs":[{"internalType":"bytes1","name":"fields","type":"bytes1"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"version","type":"string"},{"internalType":"uint256","name":"chainId","type":"uint256"},{"internalType":"address","name":"verifyingContract","type":"address"},{"internalType":"bytes32","name":"salt","type":"bytes32"},{"internalType":"uint256[]","name":"extensions","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"},{"internalType":"uint256","name":"roles","type":"uint256"}],"name":"grantRoles","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"},{"internalType":"uint256","name":"roles","type":"uint256"}],"name":"hasAllRoles","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"},{"internalType":"uint256","name":"roles","type":"uint256"}],"name":"hasAnyRole","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"result","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"pendingOwner","type":"address"}],"name":"ownershipHandoverExpiresAt","outputs":[{"internalType":"uint256","name":"result","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"proxiableUUID","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint256","name":"roles","type":"uint256"}],"name":"renounceRoles","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"requestOwnershipHandover","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"},{"internalType":"uint256","name":"roles","type":"uint256"}],"name":"revokeRoles","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"rolesOf","outputs":[{"internalType":"uint256","name":"roles","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_distributor","type":"address"},{"internalType":"uint256","name":"_fee","type":"uint256"},{"internalType":"uint256","name":"_deadline","type":"uint256"},{"internalType":"bytes","name":"_signature","type":"bytes"}],"name":"setFee","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"newImplementation","type":"address"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"upgradeToAndCall","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"_distributor","type":"address"},{"internalType":"address","name":"_recipient","type":"address"},{"internalType":"uint256","name":"_deadline","type":"uint256"},{"internalType":"bytes","name":"_signature","type":"bytes"}],"name":"withdrawFee","outputs":[],"stateMutability":"nonpayable","type":"function"}]

610140806040523461005e57306080523060a0524660c0525f60e052610100905f82526101205f81526131b49283610063843960805183818161070401526107d3015260a05183505060c05183505060e0518350505182505051815050f35b5f80fdfe6080604081815260049182361015610015575f80fd5b5f9260e0905f35821c9283630762cf3f14610bdd57508263183a4f6e14610bc45782631c10893f14610b655782631cd64df414610b2c5782632569296214610ae357826329986d3914610ac85782632a0acc6a14610aad5782632de9480714610a7a57826338fa708d1461090b5782634a4ee7b1146108df5782634f1ef28614610797578263514e62fc1461075d57826352d1902d146106ef57826354d1f13d146106a9578263715018a6146106735782638129fc1c146105d157826384b0196e146105335782638da5cb5b14610505578263cfe0237714610402578263f04e283e14610395578263f2fde38b1461033b578263f5f9a8911461015857505063fee81cf414610122575f80fd5b346101545760203660031901126101545760209161013e610d97565b9063389a75e1600c525281600c20549051908152f35b5080fd5b849084346103375760c036600319011261033757610174610d97565b61017c610dad565b93610185610dc3565b608435949067ffffffffffffffff9060a435828111610333576101ab9036908501610dd9565b979095814211610323578798999a889798519060208201927fb0b468160dab1630ef0a2d69168f606bc3bbecdab6341435d57f1c8cf92ce931845260018060a01b03809e81809316809c8601521695866060850152169384608084015260643560a084015260c083015260c08252810181811086821117610310578a525190206102499061023890610ef0565b610243368c8b610e77565b90610f65565b638b78c6d8600c52855260026020600c2054161561030157875193610ec59081860194868610908611176102ee5750916080939185936110a3853982528660208301523389830152606082015203019082f09081156102e357506020957fce10738e35f78b97594969f2c098b909401ff425841c115dbff915f3dda7b32691169485936102da865192839283610ec9565b0390a351908152f35b8451903d90823e3d90fd5b634e487b7160e01b875260419052602486fd5b87516282b42960e81b81528490fd5b604187634e487b7160e01b5f525260245ffd5b875163b08ce5b360e01b81528590fd5b8480fd5b8280fd5b8490602036600319011261015457610351610d97565b9061035a610fed565b8160601b1561038a575060018060a01b0316638b78c6d8198181545f8051602061315f8339815191525f80a35580f35b637448fbae8352601cfd5b84906020366003190112610154576103ab610d97565b906103b4610fed565b63389a75e1600c528183526020600c2090815442116103f7575082905560018060a01b0316638b78c6d8198181545f8051602061315f8339815191525f80a35580f35b636f5e88188452601cfd5b849084346103375760803660031901126103375761041e610d97565b60643567ffffffffffffffff81116103335761043d9036908501610dd9565b90638b78c6d89283600c5233875260026020600c2054161561045d578680f35b60443542116104f5576104cd92916104c561024392875160208101917f2ca08f0c5e197b3141e5c2f954b97ca510e2cd93f13c8da4f670fb807882627c835260018060a01b0316898201526024356060820152606081526104bd81610e2b565b519020610ef0565b923691610e77565b90600c52835260026020600c205416156104e957808080808680f35b516282b42960e81b8152fd5b845163b08ce5b360e01b81528690fd5b50505034610154578160031936011261015457638b78c6d8195490516001600160a01b039091168152602090f35b838583346101545781600319360112610154576105759291610582610556611009565b85919551968796600f60f81b88526020968060208a0152880190610e07565b9186830390870152610e07565b4660608501523060808501528160a085015283810360c085015260206060519182815201926080925b8281106105ba57505050500390f35b8351855286955093810193928101926001016105ab565b84903461015457816003193601126101545763409feecd1980546003825590918161064e575b505033638b78c6d819558033835f8051602061315f8339815191528180a361061d575080f35b6002905560016020527fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d2602080a180f35b600182811c14303b1015610668575060ff1b1b82806105f7565b63f92ee8a98452601cfd5b84806003193601126106a657610687610fed565b5f638b78c6d8198181545f8051602061315f8339815191528280a35580f35b80fd5b84806003193601126106a65763389a75e1600c52338152806020600c2055337ffa7b8eab7da67f412cc9575ed43464468f9bfbae89d1675917346ca6d8fe3c928280a280f35b8385346106a657806003193601126106a657307f00000000000000000000000000000000000000000000000000000000000000000361075157602082517f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc8152f35b639f03a026915052601cfd5b5050503461015457806003193601126101545760209161077b610d97565b90638b78c6d8600c525260243582600c20541615159051908152f35b91505081600319360112610337576107ad610d97565b9160243567ffffffffffffffff8111610333576107cd9036908401610dd9565b919093307f0000000000000000000000000000000000000000000000000000000000000000146108d357638b78c6d8195433036108af575b60018060a01b0316923d86526352d1902d6001527f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc90816020600183601d895afa51036108a3575090828480949388967fbc7cd75a20ee27fd9adebab32041f755214dbc6bffa90cc0225b39da2e5c2d3b8880a255610882578380f35b8190519485378338925af41561089a57818180808380f35b903d90823e3d90fd5b6355299b49600152601dfd5b638b78c6d8600c5233865260016020600c20541661080557836382b429008752601cfd5b83639f03a0268752601cfd5b5050503660031901126106a6576109086108f7610d97565b6108ff610fed565b6024359061105d565b80f35b849084346109da5760803660031901126109da57610927610d97565b91610930610dad565b67ffffffffffffffff906064358281116109da576109519036908501610dd9565b638b78c6d89182600c52335f5260026020600c205416156109de575b5050506001600160a01b0394851694853b156109da5760245f928387519889948593631ac3ddeb60e01b855216888401525af180156109d0576109ae578480f35b909192809450116109bd575052005b604190634e487b7160e01b5f525260245ffd5b83513d5f823e3d90fd5b5f80fd5b6044354211610a6a5790610243610a3f926104c5895160208101907fc55771f2ceabbd14f04a92fbf0fa8ac9e4e27a4cd03793a1a7a7b92d11677eb382528c60018060a01b038091168d83015289166060820152606081526104bd81610e2b565b90600c525f5260026020600c20541615610a5b5786808061096d565b83516282b42960e81b81528390fd5b865163b08ce5b360e01b81528690fd5b83346109da5760203660031901126109da57602090610a97610d97565b638b78c6d8600c525f5281600c20549051908152f35b83346109da575f3660031901126109da576020905160018152f35b83346109da575f3660031901126109da576020905160028152f35b5f3660031901126109da5763389a75e1600c52335f526202a30042016020600c2055337fdbf36a107da19e49527a7176a1babf963b4b0ff8cde35ee35d6cd8f1f9ac7e1d5f80a2005b83346109da57806003193601126109da57602090610b48610d97565b60243590638b78c6d8600c525f528083600c205416149051908152f35b836003193601126109da57610b78610d97565b610b80610fed565b638b78c6d8600c525f526020600c20602435815417809155600c5160601c7f715ad5ce61fc9595c7b415289d59cf203f23a94fa06f04af7e489a0a76e1fe265f80a3005b60203660031901126109da57610bdb90353361105d565b005b9084346109da57836003193601126109da57610bf7610d97565b92610c00610dad565b92610c09610dc3565b6001600160a01b03959060643587811691908290036109da5760a43560c4359367ffffffffffffffff948581116109da57610c479036908801610dd9565b999097834211610d8957508a9b8b8a9b9c8b9a9b51938160208601967fdf3d66efb7c7b992b7161de12143a7b1f114efa9fc1c50d3965d66dea088ba72885216809c860152169586606085015216938460808401528660a084015260843560c0840152818301528152610100810181811087821117610d76578a52519020610cd29061023890610ef0565b638b78c6d8600c525f5260026020600c20541615610d67578751946111f79081870195878710908711176109bd57509185939160a09593611f68863983528660208401523389840152606083015260808201520301905ff080156109d0576020957fce10738e35f78b97594969f2c098b909401ff425841c115dbff915f3dda7b32691169485936102da865192839283610ec9565b87516282b42960e81b81528590fd5b604188634e487b7160e01b5f525260245ffd5b63b08ce5b360e01b81528790fd5b600435906001600160a01b03821682036109da57565b602435906001600160a01b03821682036109da57565b604435906001600160a01b03821682036109da57565b9181601f840112156109da5782359167ffffffffffffffff83116109da57602083818601950101116109da57565b805180835260209291819084018484015e5f828201840152601f01601f1916010190565b6080810190811067ffffffffffffffff821117610e4757604052565b634e487b7160e01b5f52604160045260245ffd5b6040810190811067ffffffffffffffff821117610e4757604052565b92919267ffffffffffffffff91828111610e475760405192601f8201601f19908116603f0116840190811184821017610e47576040528294818452818301116109da578281602093845f960137010152565b90918060409360208452816020850152848401375f828201840152601f01601f1916010190565b60a0610efa611009565b90602081519101209060208151910120604051917f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f835260208301526040820152466060820152306080820152206719010000000000005f52601a52603a526042601820905f603a52565b91909160409260405191815180604014610fcc57604114610f935750505050505b638baa579f5f526004601cfd5b6060808301515f1a6020528583015190525b5f526020809101518452600160805f825afa51925f606052523d610fca575050610f86565b565b508185015160ff81901c601b016020526001600160ff1b0316606052610fa5565b638b78c6d819543303610ffc57565b6382b429005f526004601cfd5b60405161101581610e5b565b601881527f436c697175654469737472696275746f724d616e61676572000000000000000060208201529060405161104c81610e5b565b60018152603160f81b602082015290565b638b78c6d8600c525f526020600c2090815490811618809155600c5160601c7f715ad5ce61fc9595c7b415289d59cf203f23a94fa06f04af7e489a0a76e1fe265f80a356fe60803461013757601f610ec538819003918201601f19168301916001600160401b0383118484101761013b57808492608094604052833981010312610137576100478161014f565b6100536020830161014f565b61006b60606100646040860161014f565b940161014f565b600254926001600160a01b03928316908115610125578360018060a01b031991168160015416176001555f5416175f55169060018060a81b0319161760025533638b78c6d81955335f7f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08180a3638b78c6d8600c525f5260016020600c20556001600c5160601c7f715ad5ce61fc9595c7b415289d59cf203f23a94fa06f04af7e489a0a76e1fe265f80a3604051610d6190816101648239f35b60405163d92e233d60e01b8152600490fd5b5f80fd5b634e487b7160e01b5f52604160045260245ffd5b51906001600160a01b03821682036101375756fe6080806040526004361015610012575f80fd5b5f3560e01c90816302fb0c5e14610c5557508063183a4f6e14610c3d5780631ac3ddeb14610b805780631c10893f14610b205780631cd64df414610ae7578063238ac93314610abf5780632569296214610a7657806329c68dc114610a3b5780632de9480714610a095780634a4ee7b1146109df578063514e62fc146109a757806354d1f13d14610963578063584ebf761461049f5780635fc2f0361461044c5780636817031b146103e65780636c19e783146103a3578063715018a61461035f5780638da5cb5b14610333578063dfcae622146102ea578063e7e79a1e146102c0578063f04e283e14610244578063f28a80b614610229578063f2fde38b146101bf578063fbfa77cf14610197578063fc0c546a146101705763fee81cf41461013a575f80fd5b3461016c57602036600319011261016c57610153610c77565b63389a75e1600c525f52602080600c2054604051908152f35b5f80fd5b3461016c575f36600319011261016c575f546040516001600160a01b039091168152602090f35b3461016c575f36600319011261016c576002546040516001600160a01b039091168152602090f35b602036600319011261016c576101d3610c77565b6101db610caf565b8060601b1561021c5760018060a01b0316638b78c6d8198181547f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e05f80a355005b637448fbae5f526004601cfd5b3461016c575f36600319011261016c57602060405160018152f35b602036600319011261016c57610258610c77565b610260610caf565b63389a75e1600c52805f526020600c20805442116102b3575f905560018060a01b0316638b78c6d8198181547f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e05f80a355005b636f5e88185f526004601cfd5b3461016c57602036600319011261016c576004355f526004602052602060405f2054604051908152f35b3461016c57604036600319011261016c576024356001600160a01b0381169081900361016c576004355f52600360205260405f20905f52602052602060405f2054604051908152f35b3461016c575f36600319011261016c57638b78c6d819546040516001600160a01b039091168152602090f35b5f36600319011261016c57610372610caf565b5f638b78c6d8198181547f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08280a355005b3461016c57602036600319011261016c576103bc610c77565b6103c4610ccb565b600180546001600160a01b0319166001600160a01b0392909216919091179055005b3461016c57602036600319011261016c576103ff610c77565b610407610ccb565b600280546001600160a01b0319166001600160a01b039290921691821790557fe7ae49f883c825b05681b3e00e8be6fdea9ed2a8a45e4c6ecb9390fc44cce6155f80a2005b3461016c57604036600319011261016c5760243560043561046b610ccb565b805f5260046020528160405f20557f5f8f4c6efebc2c9c76d8cadfd5f9bd9cf6611483e79417c706c86997840e95735f80a3005b608036600319011261016c5767ffffffffffffffff6004351161016c5736602360043501121561016c5767ffffffffffffffff600435600401351161016c573660246004356004013560051b60043501011161016c5767ffffffffffffffff6024351161016c5736602360243501121561016c5767ffffffffffffffff602435600401351161016c57366024803560040135813501011161016c576064356001600160a01b038116900361016c5760ff60025460a01c1615610951576040516bffffffffffffffffffffffff1960643560601b16602082015260443560348201526034815280606081011067ffffffffffffffff60608301111761077f576060810160405280516020820120906105c560206004356004013560051b0160608301610c8d565b600435600401356060820152608081019182602460043501905b60246004356004013560051b60043501018210610941575050906060810151928361090b575b50508091505f52600460205260405f20549081156108f3575f8181526003602090815260408083206064356001600160a01b031684529091529020541561065857604051630c8d9eab60e31b8152600490fd5b5f8181526003602090815260408083206001600160a01b036064358116855292529091204390556001541690816107a5575b50506002545f546001600160a01b03908116929116905f1901610793576040519060208201906323b872dd60e01b8252602483015260018060a01b0360643516604483015260443560648301526064825260a082019082821067ffffffffffffffff83111761077f576020925f92604052519082855af115610774575f513d61076b5750803b155b6107535760405160443581526064356001600160a01b0316907f650e45f04ef8a0c267b2f78d983913f69ae3a353b2b32de5429307522be0ab5590602090a2005b60249060405190635274afe760e01b82526004820152fd5b60011415610712565b6040513d5f823e3d90fd5b634e487b7160e01b5f52604160045260245ffd5b604051639dd854d360e01b8152600490fd5b60243560040135156108b557604051906bffffffffffffffffffffffff1960643560601b166020830152604435603483015260548201523060601b6074820152466088820152608881528060c081011067ffffffffffffffff60c08301111761077f5760c08101604052805160208201206020527b19457468657265756d205369676e6564204d6573736167653a0a33325f52603c60042060243560040135806040146108c75760411461086557505050505b638baa579f5f526004601cfd5b606460243501355f1a6020526040602480350181375b5f5260c06020600160805f825afa51915f606052016040523d6108a057505050610858565b6001600160a01b0316036108b557818061068a565b604051638baa579f60e01b8152600490fd5b5060248035604481013560ff81901c601b016020529101356040526001600160ff1b031660605261087b565b60249060405190630ee30f2b60e21b82526004820152fd5b9260051b01608001905b8251811160051b90815260208351911852602060405f2092019181831061091557915050808280610605565b81358152602091820191016105df565b604051634065aaf160e11b8152600490fd5b5f36600319011261016c5763389a75e1600c52335f525f6020600c2055337ffa7b8eab7da67f412cc9575ed43464468f9bfbae89d1675917346ca6d8fe3c925f80a2005b3461016c57604036600319011261016c576109c0610c77565b638b78c6d8600c525f52602060243581600c2054161515604051908152f35b604036600319011261016c57610a076109f6610c77565b6109fe610caf565b60243590610ce6565b005b3461016c57602036600319011261016c57610a22610c77565b638b78c6d8600c525f52602080600c2054604051908152f35b3461016c575f36600319011261016c57610a53610ccb565b6002805460ff60a01b19811660a091821c60ff161590911b60ff60a01b16179055005b5f36600319011261016c5763389a75e1600c52335f526202a30042016020600c2055337fdbf36a107da19e49527a7176a1babf963b4b0ff8cde35ee35d6cd8f1f9ac7e1d5f80a2005b3461016c575f36600319011261016c576001546040516001600160a01b039091168152602090f35b3461016c57604036600319011261016c576020610b02610c77565b60243590638b78c6d8600c525f528082600c20541614604051908152f35b604036600319011261016c57610b34610c77565b610b3c610caf565b638b78c6d8600c525f526020600c20602435815417809155600c5160601c7f715ad5ce61fc9595c7b415289d59cf203f23a94fa06f04af7e489a0a76e1fe265f80a3005b3461016c57602036600319011261016c57610b99610c77565b610ba1610caf565b479081610baa57005b6001600160a01b0316905f80808084865af13d15610c38573d67ffffffffffffffff811161077f5760405190610bea601f8201601f191660200183610c8d565b81525f60203d92013e5b15610c265760207f884edad9ce6fa2440d8a54cc123490eb96d2768479d49ff9c7366125a942436491604051908152a2005b604051631d42c86760e21b8152600490fd5b610bf4565b602036600319011261016c57610a0760043533610ce6565b3461016c575f36600319011261016c5760209060ff60025460a01c1615158152f35b600435906001600160a01b038216820361016c57565b90601f8019910116810190811067ffffffffffffffff82111761077f57604052565b638b78c6d819543303610cbe57565b6382b429005f526004601cfd5b638b78c6d8600c52335f5260016020600c20541615610cbe57565b638b78c6d8600c525f526020600c2090815490811618809155600c5160601c7f715ad5ce61fc9595c7b415289d59cf203f23a94fa06f04af7e489a0a76e1fe265f80a356fea2646970667358221220003db0d199922105d4c550c8ec7433021a7e86b8e1c4451db8a0b39530e6b67764736f6c6343000819003360a03461015b57601f6111f738819003918201601f19168301916001600160401b0383118484101761015f5780849260a09460405283398101031261015b5761004781610173565b61005360208301610173565b9061006060408401610173565b91610079608061007260608701610173565b9501610173565b600254909490926001600160a01b03928316908115610149578360018060a01b031991168160015416176001555f5416175f55169060018060a81b0319161760025533638b78c6d81955335f7f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08180a3638b78c6d8600c525f5260016020600c20556001600c5160601c7f715ad5ce61fc9595c7b415289d59cf203f23a94fa06f04af7e489a0a76e1fe265f80a360805260405161106f908161018882396080518181816101df01526107c30152f35b60405163d92e233d60e01b8152600490fd5b5f80fd5b634e487b7160e01b5f52604160045260245ffd5b51906001600160a01b038216820361015b5756fe6080806040526004361015610012575f80fd5b5f3560e01c90816302fb0c5e14610f4f57508063183a4f6e14610f375780631ac3ddeb14610e7a5780631c10893f14610e1a5780631cd64df414610de1578063238ac93314610db95780632569296214610d7057806329c68dc114610d355780632de9480714610d035780634a4ee7b114610cd9578063514e62fc14610ca157806354d1f13d14610c5d578063584ebf76146104ee5780635fc2f0361461049b5780636817031b146104355780636c19e783146103f2578063715018a6146103ae5780638da5cb5b14610382578063dfcae62214610339578063e7e79a1e1461030f578063f04e283e14610293578063f28a80b614610278578063f2fde38b1461020e578063f83d08ba146101ca578063fbfa77cf146101a2578063fc0c546a1461017b5763fee81cf414610145575f80fd5b346101775760203660031901126101775761015e610f71565b63389a75e1600c525f52602080600c2054604051908152f35b5f80fd5b34610177575f366003190112610177575f546040516001600160a01b039091168152602090f35b34610177575f366003190112610177576002546040516001600160a01b039091168152602090f35b34610177575f366003190112610177576040517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b602036600319011261017757610222610f71565b61022a610fa9565b8060601b1561026b5760018060a01b0316638b78c6d8198181547f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e05f80a355005b637448fbae5f526004601cfd5b34610177575f36600319011261017757602060405160018152f35b6020366003190112610177576102a7610f71565b6102af610fa9565b63389a75e1600c52805f526020600c2080544211610302575f905560018060a01b0316638b78c6d8198181547f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e05f80a355005b636f5e88185f526004601cfd5b34610177576020366003190112610177576004355f526004602052602060405f2054604051908152f35b34610177576040366003190112610177576024356001600160a01b03811690819003610177576004355f52600360205260405f20905f52602052602060405f2054604051908152f35b34610177575f36600319011261017757638b78c6d819546040516001600160a01b039091168152602090f35b5f366003190112610177576103c1610fa9565b5f638b78c6d8198181547f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08280a355005b346101775760203660031901126101775761040b610f71565b610413610fc5565b600180546001600160a01b0319166001600160a01b0392909216919091179055005b346101775760203660031901126101775761044e610f71565b610456610fc5565b600280546001600160a01b0319166001600160a01b039290921691821790557fe7ae49f883c825b05681b3e00e8be6fdea9ed2a8a45e4c6ecb9390fc44cce6155f80a2005b34610177576040366003190112610177576024356004356104ba610fc5565b805f5260046020528160405f20557f5f8f4c6efebc2c9c76d8cadfd5f9bd9cf6611483e79417c706c86997840e95735f80a3005b60803660031901126101775767ffffffffffffffff60043511610177573660236004350112156101775767ffffffffffffffff6004356004013511610177573660246004356004013560051b6004350101116101775767ffffffffffffffff60243511610177573660236024350112156101775767ffffffffffffffff6024356004013511610177573660248035600401358135010111610177576064356001600160a01b03811690036101775760ff60025460a01c1615610c4b576040516bffffffffffffffffffffffff1960643560601b16602082015260443560348201526034815280606081011067ffffffffffffffff6060830111176109905760608101604052805160208201209061061460206004356004013560051b0160608301610f87565b600435600401356060820152608081019182602460043501905b60246004356004013560051b60043501018210610c3b5750509060608101519283610c05575b50508091505f52600460205260405f2054908115610bed575f8181526003602090815260408083206064356001600160a01b03168452909152902054156106a757604051630c8d9eab60e31b8152600490fd5b5f8181526003602090815260408083206001600160a01b03606435811685529252909120439055600154169081610a9f575b50506002545f546040516317f727f360e11b81526001600160a01b036064358116600483015260448035602484015291949281169381169261018092839287928391165afa93841561092c575f946109c1575b50506040830180519092906001600160a01b03168181036109a4575060608401918251906040519160208301916323b872dd60e01b8352602484015230604484015260648301526064825260a082019082821067ffffffffffffffff831117610990576020925f92604052519082855af11561092c575f513d6109875750803b155b61096f57815160405163095ea7b360e01b81527f00000000000000000000000000000000000000000000000000000000000000006001600160a01b038116600483015260248201929092529091602090829060449082905f905af1801561092c57610937575b50604051632f45cd6f60e01b815284516001600160a01b03908116600483015260208087015182166024840152945181166044830152925160648201526080850151608482015260a085015160a482015260c085015160c482015260e085015160e482015261010085015161010482015261012085015161012482015261014085015183166101448201526101609094015161016485015283916101849183915f91165af1801561092c57610901575b60405160443581526064356001600160a01b0316907f650e45f04ef8a0c267b2f78d983913f69ae3a353b2b32de5429307522be0ab5590602090a2005b602090813d8311610925575b6109178183610f87565b8101031261017757806108c4565b503d61090d565b6040513d5f823e3d90fd5b6020813d602011610967575b8161095060209383610f87565b810103126101775751801515036101775784610814565b3d9150610943565b60249060405190635274afe760e01b82526004820152fd5b600114156107ae565b634e487b7160e01b5f52604160045260245ffd5b60449160405191630fa309cb60e11b835260048301526024820152fd5b908092945081813d8311610a98575b6109da8183610f87565b810103126101775760405191820182811067ffffffffffffffff82111761099057604052610a0781610fe0565b8252610a1560208201610fe0565b6020830152610a2660408201610fe0565b6040830152606081015160608301526080810151608083015260a081015160a083015260c081015160c083015260e081015160e083015261010080820151908301526101208082015190830152610140610a81818301610fe0565b90830152610160809101519082015291838061072c565b503d6109d0565b6024356004013515610baf57604051906bffffffffffffffffffffffff1960643560601b166020830152604435603483015260548201523060601b6074820152466088820152608881528060c081011067ffffffffffffffff60c0830111176109905760c08101604052805160208201206020527b19457468657265756d205369676e6564204d6573736167653a0a33325f52603c6004206024356004013580604014610bc157604114610b5f57505050505b638baa579f5f526004601cfd5b606460243501355f1a6020526040602480350181375b5f5260c06020600160805f825afa51915f606052016040523d610b9a57505050610b52565b6001600160a01b031603610baf5781806106d9565b604051638baa579f60e01b8152600490fd5b5060248035604481013560ff81901c601b016020529101356040526001600160ff1b0316606052610b75565b60249060405190630ee30f2b60e21b82526004820152fd5b9260051b01608001905b8251811160051b90815260208351911852602060405f20920191818310610c0f57915050808280610654565b813581526020918201910161062e565b604051634065aaf160e11b8152600490fd5b5f3660031901126101775763389a75e1600c52335f525f6020600c2055337ffa7b8eab7da67f412cc9575ed43464468f9bfbae89d1675917346ca6d8fe3c925f80a2005b3461017757604036600319011261017757610cba610f71565b638b78c6d8600c525f52602060243581600c2054161515604051908152f35b604036600319011261017757610d01610cf0610f71565b610cf8610fa9565b60243590610ff4565b005b3461017757602036600319011261017757610d1c610f71565b638b78c6d8600c525f52602080600c2054604051908152f35b34610177575f36600319011261017757610d4d610fc5565b6002805460ff60a01b19811660a091821c60ff161590911b60ff60a01b16179055005b5f3660031901126101775763389a75e1600c52335f526202a30042016020600c2055337fdbf36a107da19e49527a7176a1babf963b4b0ff8cde35ee35d6cd8f1f9ac7e1d5f80a2005b34610177575f366003190112610177576001546040516001600160a01b039091168152602090f35b34610177576040366003190112610177576020610dfc610f71565b60243590638b78c6d8600c525f528082600c20541614604051908152f35b604036600319011261017757610e2e610f71565b610e36610fa9565b638b78c6d8600c525f526020600c20602435815417809155600c5160601c7f715ad5ce61fc9595c7b415289d59cf203f23a94fa06f04af7e489a0a76e1fe265f80a3005b3461017757602036600319011261017757610e93610f71565b610e9b610fa9565b479081610ea457005b6001600160a01b0316905f80808084865af13d15610f32573d67ffffffffffffffff81116109905760405190610ee4601f8201601f191660200183610f87565b81525f60203d92013e5b15610f205760207f884edad9ce6fa2440d8a54cc123490eb96d2768479d49ff9c7366125a942436491604051908152a2005b604051631d42c86760e21b8152600490fd5b610eee565b602036600319011261017757610d0160043533610ff4565b34610177575f3660031901126101775760209060ff60025460a01c1615158152f35b600435906001600160a01b038216820361017757565b90601f8019910116810190811067ffffffffffffffff82111761099057604052565b638b78c6d819543303610fb857565b6382b429005f526004601cfd5b638b78c6d8600c52335f5260016020600c20541615610fb857565b51906001600160a01b038216820361017757565b638b78c6d8600c525f526020600c2090815490811618809155600c5160601c7f715ad5ce61fc9595c7b415289d59cf203f23a94fa06f04af7e489a0a76e1fe265f80a356fea26469706673582212207de909fc8255e283482109cd6be67474f14c03f8212dc16e476663cebaee5ebf64736f6c634300081900338be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0a2646970667358221220a7fcd6a788aba7ad491fefd2d65347e30e605afb206d663c6075f35d5f42cd4064736f6c63430008190033

Deployed Bytecode

0x6080604081815260049182361015610015575f80fd5b5f9260e0905f35821c9283630762cf3f14610bdd57508263183a4f6e14610bc45782631c10893f14610b655782631cd64df414610b2c5782632569296214610ae357826329986d3914610ac85782632a0acc6a14610aad5782632de9480714610a7a57826338fa708d1461090b5782634a4ee7b1146108df5782634f1ef28614610797578263514e62fc1461075d57826352d1902d146106ef57826354d1f13d146106a9578263715018a6146106735782638129fc1c146105d157826384b0196e146105335782638da5cb5b14610505578263cfe0237714610402578263f04e283e14610395578263f2fde38b1461033b578263f5f9a8911461015857505063fee81cf414610122575f80fd5b346101545760203660031901126101545760209161013e610d97565b9063389a75e1600c525281600c20549051908152f35b5080fd5b849084346103375760c036600319011261033757610174610d97565b61017c610dad565b93610185610dc3565b608435949067ffffffffffffffff9060a435828111610333576101ab9036908501610dd9565b979095814211610323578798999a889798519060208201927fb0b468160dab1630ef0a2d69168f606bc3bbecdab6341435d57f1c8cf92ce931845260018060a01b03809e81809316809c8601521695866060850152169384608084015260643560a084015260c083015260c08252810181811086821117610310578a525190206102499061023890610ef0565b610243368c8b610e77565b90610f65565b638b78c6d8600c52855260026020600c2054161561030157875193610ec59081860194868610908611176102ee5750916080939185936110a3853982528660208301523389830152606082015203019082f09081156102e357506020957fce10738e35f78b97594969f2c098b909401ff425841c115dbff915f3dda7b32691169485936102da865192839283610ec9565b0390a351908152f35b8451903d90823e3d90fd5b634e487b7160e01b875260419052602486fd5b87516282b42960e81b81528490fd5b604187634e487b7160e01b5f525260245ffd5b875163b08ce5b360e01b81528590fd5b8480fd5b8280fd5b8490602036600319011261015457610351610d97565b9061035a610fed565b8160601b1561038a575060018060a01b0316638b78c6d8198181545f8051602061315f8339815191525f80a35580f35b637448fbae8352601cfd5b84906020366003190112610154576103ab610d97565b906103b4610fed565b63389a75e1600c528183526020600c2090815442116103f7575082905560018060a01b0316638b78c6d8198181545f8051602061315f8339815191525f80a35580f35b636f5e88188452601cfd5b849084346103375760803660031901126103375761041e610d97565b60643567ffffffffffffffff81116103335761043d9036908501610dd9565b90638b78c6d89283600c5233875260026020600c2054161561045d578680f35b60443542116104f5576104cd92916104c561024392875160208101917f2ca08f0c5e197b3141e5c2f954b97ca510e2cd93f13c8da4f670fb807882627c835260018060a01b0316898201526024356060820152606081526104bd81610e2b565b519020610ef0565b923691610e77565b90600c52835260026020600c205416156104e957808080808680f35b516282b42960e81b8152fd5b845163b08ce5b360e01b81528690fd5b50505034610154578160031936011261015457638b78c6d8195490516001600160a01b039091168152602090f35b838583346101545781600319360112610154576105759291610582610556611009565b85919551968796600f60f81b88526020968060208a0152880190610e07565b9186830390870152610e07565b4660608501523060808501528160a085015283810360c085015260206060519182815201926080925b8281106105ba57505050500390f35b8351855286955093810193928101926001016105ab565b84903461015457816003193601126101545763409feecd1980546003825590918161064e575b505033638b78c6d819558033835f8051602061315f8339815191528180a361061d575080f35b6002905560016020527fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d2602080a180f35b600182811c14303b1015610668575060ff1b1b82806105f7565b63f92ee8a98452601cfd5b84806003193601126106a657610687610fed565b5f638b78c6d8198181545f8051602061315f8339815191528280a35580f35b80fd5b84806003193601126106a65763389a75e1600c52338152806020600c2055337ffa7b8eab7da67f412cc9575ed43464468f9bfbae89d1675917346ca6d8fe3c928280a280f35b8385346106a657806003193601126106a657307f00000000000000000000000077e0f495634f416251a72626ab45879e2b94274a0361075157602082517f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc8152f35b639f03a026915052601cfd5b5050503461015457806003193601126101545760209161077b610d97565b90638b78c6d8600c525260243582600c20541615159051908152f35b91505081600319360112610337576107ad610d97565b9160243567ffffffffffffffff8111610333576107cd9036908401610dd9565b919093307f00000000000000000000000077e0f495634f416251a72626ab45879e2b94274a146108d357638b78c6d8195433036108af575b60018060a01b0316923d86526352d1902d6001527f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc90816020600183601d895afa51036108a3575090828480949388967fbc7cd75a20ee27fd9adebab32041f755214dbc6bffa90cc0225b39da2e5c2d3b8880a255610882578380f35b8190519485378338925af41561089a57818180808380f35b903d90823e3d90fd5b6355299b49600152601dfd5b638b78c6d8600c5233865260016020600c20541661080557836382b429008752601cfd5b83639f03a0268752601cfd5b5050503660031901126106a6576109086108f7610d97565b6108ff610fed565b6024359061105d565b80f35b849084346109da5760803660031901126109da57610927610d97565b91610930610dad565b67ffffffffffffffff906064358281116109da576109519036908501610dd9565b638b78c6d89182600c52335f5260026020600c205416156109de575b5050506001600160a01b0394851694853b156109da5760245f928387519889948593631ac3ddeb60e01b855216888401525af180156109d0576109ae578480f35b909192809450116109bd575052005b604190634e487b7160e01b5f525260245ffd5b83513d5f823e3d90fd5b5f80fd5b6044354211610a6a5790610243610a3f926104c5895160208101907fc55771f2ceabbd14f04a92fbf0fa8ac9e4e27a4cd03793a1a7a7b92d11677eb382528c60018060a01b038091168d83015289166060820152606081526104bd81610e2b565b90600c525f5260026020600c20541615610a5b5786808061096d565b83516282b42960e81b81528390fd5b865163b08ce5b360e01b81528690fd5b83346109da5760203660031901126109da57602090610a97610d97565b638b78c6d8600c525f5281600c20549051908152f35b83346109da575f3660031901126109da576020905160018152f35b83346109da575f3660031901126109da576020905160028152f35b5f3660031901126109da5763389a75e1600c52335f526202a30042016020600c2055337fdbf36a107da19e49527a7176a1babf963b4b0ff8cde35ee35d6cd8f1f9ac7e1d5f80a2005b83346109da57806003193601126109da57602090610b48610d97565b60243590638b78c6d8600c525f528083600c205416149051908152f35b836003193601126109da57610b78610d97565b610b80610fed565b638b78c6d8600c525f526020600c20602435815417809155600c5160601c7f715ad5ce61fc9595c7b415289d59cf203f23a94fa06f04af7e489a0a76e1fe265f80a3005b60203660031901126109da57610bdb90353361105d565b005b9084346109da57836003193601126109da57610bf7610d97565b92610c00610dad565b92610c09610dc3565b6001600160a01b03959060643587811691908290036109da5760a43560c4359367ffffffffffffffff948581116109da57610c479036908801610dd9565b999097834211610d8957508a9b8b8a9b9c8b9a9b51938160208601967fdf3d66efb7c7b992b7161de12143a7b1f114efa9fc1c50d3965d66dea088ba72885216809c860152169586606085015216938460808401528660a084015260843560c0840152818301528152610100810181811087821117610d76578a52519020610cd29061023890610ef0565b638b78c6d8600c525f5260026020600c20541615610d67578751946111f79081870195878710908711176109bd57509185939160a09593611f68863983528660208401523389840152606083015260808201520301905ff080156109d0576020957fce10738e35f78b97594969f2c098b909401ff425841c115dbff915f3dda7b32691169485936102da865192839283610ec9565b87516282b42960e81b81528590fd5b604188634e487b7160e01b5f525260245ffd5b63b08ce5b360e01b81528790fd5b600435906001600160a01b03821682036109da57565b602435906001600160a01b03821682036109da57565b604435906001600160a01b03821682036109da57565b9181601f840112156109da5782359167ffffffffffffffff83116109da57602083818601950101116109da57565b805180835260209291819084018484015e5f828201840152601f01601f1916010190565b6080810190811067ffffffffffffffff821117610e4757604052565b634e487b7160e01b5f52604160045260245ffd5b6040810190811067ffffffffffffffff821117610e4757604052565b92919267ffffffffffffffff91828111610e475760405192601f8201601f19908116603f0116840190811184821017610e47576040528294818452818301116109da578281602093845f960137010152565b90918060409360208452816020850152848401375f828201840152601f01601f1916010190565b60a0610efa611009565b90602081519101209060208151910120604051917f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f835260208301526040820152466060820152306080820152206719010000000000005f52601a52603a526042601820905f603a52565b91909160409260405191815180604014610fcc57604114610f935750505050505b638baa579f5f526004601cfd5b6060808301515f1a6020528583015190525b5f526020809101518452600160805f825afa51925f606052523d610fca575050610f86565b565b508185015160ff81901c601b016020526001600160ff1b0316606052610fa5565b638b78c6d819543303610ffc57565b6382b429005f526004601cfd5b60405161101581610e5b565b601881527f436c697175654469737472696275746f724d616e61676572000000000000000060208201529060405161104c81610e5b565b60018152603160f81b602082015290565b638b78c6d8600c525f526020600c2090815490811618809155600c5160601c7f715ad5ce61fc9595c7b415289d59cf203f23a94fa06f04af7e489a0a76e1fe265f80a356fe60803461013757601f610ec538819003918201601f19168301916001600160401b0383118484101761013b57808492608094604052833981010312610137576100478161014f565b6100536020830161014f565b61006b60606100646040860161014f565b940161014f565b600254926001600160a01b03928316908115610125578360018060a01b031991168160015416176001555f5416175f55169060018060a81b0319161760025533638b78c6d81955335f7f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08180a3638b78c6d8600c525f5260016020600c20556001600c5160601c7f715ad5ce61fc9595c7b415289d59cf203f23a94fa06f04af7e489a0a76e1fe265f80a3604051610d6190816101648239f35b60405163d92e233d60e01b8152600490fd5b5f80fd5b634e487b7160e01b5f52604160045260245ffd5b51906001600160a01b03821682036101375756fe6080806040526004361015610012575f80fd5b5f3560e01c90816302fb0c5e14610c5557508063183a4f6e14610c3d5780631ac3ddeb14610b805780631c10893f14610b205780631cd64df414610ae7578063238ac93314610abf5780632569296214610a7657806329c68dc114610a3b5780632de9480714610a095780634a4ee7b1146109df578063514e62fc146109a757806354d1f13d14610963578063584ebf761461049f5780635fc2f0361461044c5780636817031b146103e65780636c19e783146103a3578063715018a61461035f5780638da5cb5b14610333578063dfcae622146102ea578063e7e79a1e146102c0578063f04e283e14610244578063f28a80b614610229578063f2fde38b146101bf578063fbfa77cf14610197578063fc0c546a146101705763fee81cf41461013a575f80fd5b3461016c57602036600319011261016c57610153610c77565b63389a75e1600c525f52602080600c2054604051908152f35b5f80fd5b3461016c575f36600319011261016c575f546040516001600160a01b039091168152602090f35b3461016c575f36600319011261016c576002546040516001600160a01b039091168152602090f35b602036600319011261016c576101d3610c77565b6101db610caf565b8060601b1561021c5760018060a01b0316638b78c6d8198181547f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e05f80a355005b637448fbae5f526004601cfd5b3461016c575f36600319011261016c57602060405160018152f35b602036600319011261016c57610258610c77565b610260610caf565b63389a75e1600c52805f526020600c20805442116102b3575f905560018060a01b0316638b78c6d8198181547f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e05f80a355005b636f5e88185f526004601cfd5b3461016c57602036600319011261016c576004355f526004602052602060405f2054604051908152f35b3461016c57604036600319011261016c576024356001600160a01b0381169081900361016c576004355f52600360205260405f20905f52602052602060405f2054604051908152f35b3461016c575f36600319011261016c57638b78c6d819546040516001600160a01b039091168152602090f35b5f36600319011261016c57610372610caf565b5f638b78c6d8198181547f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08280a355005b3461016c57602036600319011261016c576103bc610c77565b6103c4610ccb565b600180546001600160a01b0319166001600160a01b0392909216919091179055005b3461016c57602036600319011261016c576103ff610c77565b610407610ccb565b600280546001600160a01b0319166001600160a01b039290921691821790557fe7ae49f883c825b05681b3e00e8be6fdea9ed2a8a45e4c6ecb9390fc44cce6155f80a2005b3461016c57604036600319011261016c5760243560043561046b610ccb565b805f5260046020528160405f20557f5f8f4c6efebc2c9c76d8cadfd5f9bd9cf6611483e79417c706c86997840e95735f80a3005b608036600319011261016c5767ffffffffffffffff6004351161016c5736602360043501121561016c5767ffffffffffffffff600435600401351161016c573660246004356004013560051b60043501011161016c5767ffffffffffffffff6024351161016c5736602360243501121561016c5767ffffffffffffffff602435600401351161016c57366024803560040135813501011161016c576064356001600160a01b038116900361016c5760ff60025460a01c1615610951576040516bffffffffffffffffffffffff1960643560601b16602082015260443560348201526034815280606081011067ffffffffffffffff60608301111761077f576060810160405280516020820120906105c560206004356004013560051b0160608301610c8d565b600435600401356060820152608081019182602460043501905b60246004356004013560051b60043501018210610941575050906060810151928361090b575b50508091505f52600460205260405f20549081156108f3575f8181526003602090815260408083206064356001600160a01b031684529091529020541561065857604051630c8d9eab60e31b8152600490fd5b5f8181526003602090815260408083206001600160a01b036064358116855292529091204390556001541690816107a5575b50506002545f546001600160a01b03908116929116905f1901610793576040519060208201906323b872dd60e01b8252602483015260018060a01b0360643516604483015260443560648301526064825260a082019082821067ffffffffffffffff83111761077f576020925f92604052519082855af115610774575f513d61076b5750803b155b6107535760405160443581526064356001600160a01b0316907f650e45f04ef8a0c267b2f78d983913f69ae3a353b2b32de5429307522be0ab5590602090a2005b60249060405190635274afe760e01b82526004820152fd5b60011415610712565b6040513d5f823e3d90fd5b634e487b7160e01b5f52604160045260245ffd5b604051639dd854d360e01b8152600490fd5b60243560040135156108b557604051906bffffffffffffffffffffffff1960643560601b166020830152604435603483015260548201523060601b6074820152466088820152608881528060c081011067ffffffffffffffff60c08301111761077f5760c08101604052805160208201206020527b19457468657265756d205369676e6564204d6573736167653a0a33325f52603c60042060243560040135806040146108c75760411461086557505050505b638baa579f5f526004601cfd5b606460243501355f1a6020526040602480350181375b5f5260c06020600160805f825afa51915f606052016040523d6108a057505050610858565b6001600160a01b0316036108b557818061068a565b604051638baa579f60e01b8152600490fd5b5060248035604481013560ff81901c601b016020529101356040526001600160ff1b031660605261087b565b60249060405190630ee30f2b60e21b82526004820152fd5b9260051b01608001905b8251811160051b90815260208351911852602060405f2092019181831061091557915050808280610605565b81358152602091820191016105df565b604051634065aaf160e11b8152600490fd5b5f36600319011261016c5763389a75e1600c52335f525f6020600c2055337ffa7b8eab7da67f412cc9575ed43464468f9bfbae89d1675917346ca6d8fe3c925f80a2005b3461016c57604036600319011261016c576109c0610c77565b638b78c6d8600c525f52602060243581600c2054161515604051908152f35b604036600319011261016c57610a076109f6610c77565b6109fe610caf565b60243590610ce6565b005b3461016c57602036600319011261016c57610a22610c77565b638b78c6d8600c525f52602080600c2054604051908152f35b3461016c575f36600319011261016c57610a53610ccb565b6002805460ff60a01b19811660a091821c60ff161590911b60ff60a01b16179055005b5f36600319011261016c5763389a75e1600c52335f526202a30042016020600c2055337fdbf36a107da19e49527a7176a1babf963b4b0ff8cde35ee35d6cd8f1f9ac7e1d5f80a2005b3461016c575f36600319011261016c576001546040516001600160a01b039091168152602090f35b3461016c57604036600319011261016c576020610b02610c77565b60243590638b78c6d8600c525f528082600c20541614604051908152f35b604036600319011261016c57610b34610c77565b610b3c610caf565b638b78c6d8600c525f526020600c20602435815417809155600c5160601c7f715ad5ce61fc9595c7b415289d59cf203f23a94fa06f04af7e489a0a76e1fe265f80a3005b3461016c57602036600319011261016c57610b99610c77565b610ba1610caf565b479081610baa57005b6001600160a01b0316905f80808084865af13d15610c38573d67ffffffffffffffff811161077f5760405190610bea601f8201601f191660200183610c8d565b81525f60203d92013e5b15610c265760207f884edad9ce6fa2440d8a54cc123490eb96d2768479d49ff9c7366125a942436491604051908152a2005b604051631d42c86760e21b8152600490fd5b610bf4565b602036600319011261016c57610a0760043533610ce6565b3461016c575f36600319011261016c5760209060ff60025460a01c1615158152f35b600435906001600160a01b038216820361016c57565b90601f8019910116810190811067ffffffffffffffff82111761077f57604052565b638b78c6d819543303610cbe57565b6382b429005f526004601cfd5b638b78c6d8600c52335f5260016020600c20541615610cbe57565b638b78c6d8600c525f526020600c2090815490811618809155600c5160601c7f715ad5ce61fc9595c7b415289d59cf203f23a94fa06f04af7e489a0a76e1fe265f80a356fea2646970667358221220003db0d199922105d4c550c8ec7433021a7e86b8e1c4451db8a0b39530e6b67764736f6c6343000819003360a03461015b57601f6111f738819003918201601f19168301916001600160401b0383118484101761015f5780849260a09460405283398101031261015b5761004781610173565b61005360208301610173565b9061006060408401610173565b91610079608061007260608701610173565b9501610173565b600254909490926001600160a01b03928316908115610149578360018060a01b031991168160015416176001555f5416175f55169060018060a81b0319161760025533638b78c6d81955335f7f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08180a3638b78c6d8600c525f5260016020600c20556001600c5160601c7f715ad5ce61fc9595c7b415289d59cf203f23a94fa06f04af7e489a0a76e1fe265f80a360805260405161106f908161018882396080518181816101df01526107c30152f35b60405163d92e233d60e01b8152600490fd5b5f80fd5b634e487b7160e01b5f52604160045260245ffd5b51906001600160a01b038216820361015b5756fe6080806040526004361015610012575f80fd5b5f3560e01c90816302fb0c5e14610f4f57508063183a4f6e14610f375780631ac3ddeb14610e7a5780631c10893f14610e1a5780631cd64df414610de1578063238ac93314610db95780632569296214610d7057806329c68dc114610d355780632de9480714610d035780634a4ee7b114610cd9578063514e62fc14610ca157806354d1f13d14610c5d578063584ebf76146104ee5780635fc2f0361461049b5780636817031b146104355780636c19e783146103f2578063715018a6146103ae5780638da5cb5b14610382578063dfcae62214610339578063e7e79a1e1461030f578063f04e283e14610293578063f28a80b614610278578063f2fde38b1461020e578063f83d08ba146101ca578063fbfa77cf146101a2578063fc0c546a1461017b5763fee81cf414610145575f80fd5b346101775760203660031901126101775761015e610f71565b63389a75e1600c525f52602080600c2054604051908152f35b5f80fd5b34610177575f366003190112610177575f546040516001600160a01b039091168152602090f35b34610177575f366003190112610177576002546040516001600160a01b039091168152602090f35b34610177575f366003190112610177576040517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b602036600319011261017757610222610f71565b61022a610fa9565b8060601b1561026b5760018060a01b0316638b78c6d8198181547f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e05f80a355005b637448fbae5f526004601cfd5b34610177575f36600319011261017757602060405160018152f35b6020366003190112610177576102a7610f71565b6102af610fa9565b63389a75e1600c52805f526020600c2080544211610302575f905560018060a01b0316638b78c6d8198181547f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e05f80a355005b636f5e88185f526004601cfd5b34610177576020366003190112610177576004355f526004602052602060405f2054604051908152f35b34610177576040366003190112610177576024356001600160a01b03811690819003610177576004355f52600360205260405f20905f52602052602060405f2054604051908152f35b34610177575f36600319011261017757638b78c6d819546040516001600160a01b039091168152602090f35b5f366003190112610177576103c1610fa9565b5f638b78c6d8198181547f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08280a355005b346101775760203660031901126101775761040b610f71565b610413610fc5565b600180546001600160a01b0319166001600160a01b0392909216919091179055005b346101775760203660031901126101775761044e610f71565b610456610fc5565b600280546001600160a01b0319166001600160a01b039290921691821790557fe7ae49f883c825b05681b3e00e8be6fdea9ed2a8a45e4c6ecb9390fc44cce6155f80a2005b34610177576040366003190112610177576024356004356104ba610fc5565b805f5260046020528160405f20557f5f8f4c6efebc2c9c76d8cadfd5f9bd9cf6611483e79417c706c86997840e95735f80a3005b60803660031901126101775767ffffffffffffffff60043511610177573660236004350112156101775767ffffffffffffffff6004356004013511610177573660246004356004013560051b6004350101116101775767ffffffffffffffff60243511610177573660236024350112156101775767ffffffffffffffff6024356004013511610177573660248035600401358135010111610177576064356001600160a01b03811690036101775760ff60025460a01c1615610c4b576040516bffffffffffffffffffffffff1960643560601b16602082015260443560348201526034815280606081011067ffffffffffffffff6060830111176109905760608101604052805160208201209061061460206004356004013560051b0160608301610f87565b600435600401356060820152608081019182602460043501905b60246004356004013560051b60043501018210610c3b5750509060608101519283610c05575b50508091505f52600460205260405f2054908115610bed575f8181526003602090815260408083206064356001600160a01b03168452909152902054156106a757604051630c8d9eab60e31b8152600490fd5b5f8181526003602090815260408083206001600160a01b03606435811685529252909120439055600154169081610a9f575b50506002545f546040516317f727f360e11b81526001600160a01b036064358116600483015260448035602484015291949281169381169261018092839287928391165afa93841561092c575f946109c1575b50506040830180519092906001600160a01b03168181036109a4575060608401918251906040519160208301916323b872dd60e01b8352602484015230604484015260648301526064825260a082019082821067ffffffffffffffff831117610990576020925f92604052519082855af11561092c575f513d6109875750803b155b61096f57815160405163095ea7b360e01b81527f00000000000000000000000000000000000000000000000000000000000000006001600160a01b038116600483015260248201929092529091602090829060449082905f905af1801561092c57610937575b50604051632f45cd6f60e01b815284516001600160a01b03908116600483015260208087015182166024840152945181166044830152925160648201526080850151608482015260a085015160a482015260c085015160c482015260e085015160e482015261010085015161010482015261012085015161012482015261014085015183166101448201526101609094015161016485015283916101849183915f91165af1801561092c57610901575b60405160443581526064356001600160a01b0316907f650e45f04ef8a0c267b2f78d983913f69ae3a353b2b32de5429307522be0ab5590602090a2005b602090813d8311610925575b6109178183610f87565b8101031261017757806108c4565b503d61090d565b6040513d5f823e3d90fd5b6020813d602011610967575b8161095060209383610f87565b810103126101775751801515036101775784610814565b3d9150610943565b60249060405190635274afe760e01b82526004820152fd5b600114156107ae565b634e487b7160e01b5f52604160045260245ffd5b60449160405191630fa309cb60e11b835260048301526024820152fd5b908092945081813d8311610a98575b6109da8183610f87565b810103126101775760405191820182811067ffffffffffffffff82111761099057604052610a0781610fe0565b8252610a1560208201610fe0565b6020830152610a2660408201610fe0565b6040830152606081015160608301526080810151608083015260a081015160a083015260c081015160c083015260e081015160e083015261010080820151908301526101208082015190830152610140610a81818301610fe0565b90830152610160809101519082015291838061072c565b503d6109d0565b6024356004013515610baf57604051906bffffffffffffffffffffffff1960643560601b166020830152604435603483015260548201523060601b6074820152466088820152608881528060c081011067ffffffffffffffff60c0830111176109905760c08101604052805160208201206020527b19457468657265756d205369676e6564204d6573736167653a0a33325f52603c6004206024356004013580604014610bc157604114610b5f57505050505b638baa579f5f526004601cfd5b606460243501355f1a6020526040602480350181375b5f5260c06020600160805f825afa51915f606052016040523d610b9a57505050610b52565b6001600160a01b031603610baf5781806106d9565b604051638baa579f60e01b8152600490fd5b5060248035604481013560ff81901c601b016020529101356040526001600160ff1b0316606052610b75565b60249060405190630ee30f2b60e21b82526004820152fd5b9260051b01608001905b8251811160051b90815260208351911852602060405f20920191818310610c0f57915050808280610654565b813581526020918201910161062e565b604051634065aaf160e11b8152600490fd5b5f3660031901126101775763389a75e1600c52335f525f6020600c2055337ffa7b8eab7da67f412cc9575ed43464468f9bfbae89d1675917346ca6d8fe3c925f80a2005b3461017757604036600319011261017757610cba610f71565b638b78c6d8600c525f52602060243581600c2054161515604051908152f35b604036600319011261017757610d01610cf0610f71565b610cf8610fa9565b60243590610ff4565b005b3461017757602036600319011261017757610d1c610f71565b638b78c6d8600c525f52602080600c2054604051908152f35b34610177575f36600319011261017757610d4d610fc5565b6002805460ff60a01b19811660a091821c60ff161590911b60ff60a01b16179055005b5f3660031901126101775763389a75e1600c52335f526202a30042016020600c2055337fdbf36a107da19e49527a7176a1babf963b4b0ff8cde35ee35d6cd8f1f9ac7e1d5f80a2005b34610177575f366003190112610177576001546040516001600160a01b039091168152602090f35b34610177576040366003190112610177576020610dfc610f71565b60243590638b78c6d8600c525f528082600c20541614604051908152f35b604036600319011261017757610e2e610f71565b610e36610fa9565b638b78c6d8600c525f526020600c20602435815417809155600c5160601c7f715ad5ce61fc9595c7b415289d59cf203f23a94fa06f04af7e489a0a76e1fe265f80a3005b3461017757602036600319011261017757610e93610f71565b610e9b610fa9565b479081610ea457005b6001600160a01b0316905f80808084865af13d15610f32573d67ffffffffffffffff81116109905760405190610ee4601f8201601f191660200183610f87565b81525f60203d92013e5b15610f205760207f884edad9ce6fa2440d8a54cc123490eb96d2768479d49ff9c7366125a942436491604051908152a2005b604051631d42c86760e21b8152600490fd5b610eee565b602036600319011261017757610d0160043533610ff4565b34610177575f3660031901126101775760209060ff60025460a01c1615158152f35b600435906001600160a01b038216820361017757565b90601f8019910116810190811067ffffffffffffffff82111761099057604052565b638b78c6d819543303610fb857565b6382b429005f526004601cfd5b638b78c6d8600c52335f5260016020600c20541615610fb857565b51906001600160a01b038216820361017757565b638b78c6d8600c525f526020600c2090815490811618809155600c5160601c7f715ad5ce61fc9595c7b415289d59cf203f23a94fa06f04af7e489a0a76e1fe265f80a356fea26469706673582212207de909fc8255e283482109cd6be67474f14c03f8212dc16e476663cebaee5ebf64736f6c634300081900338be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0a2646970667358221220a7fcd6a788aba7ad491fefd2d65347e30e605afb206d663c6075f35d5f42cd4064736f6c63430008190033

Block Transaction Gas Used Reward
view all blocks produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.