BERA Price: $3.67 (-0.27%)

Contract

0xB5717135E0A6C7f8831a9BAC81976d19a96009D6

Overview

BERA Balance

Berachain LogoBerachain LogoBerachain Logo0 BERA

BERA Value

$0.00

Multichain Info

No addresses found
Age:1H
Reset Filter

Transaction Hash
Method
Block
From
To

There are no matching entries

1 Internal Transaction and > 10 Token Transfers found.

Latest 1 internal transaction

Parent Transaction Hash Block From To
27423742025-03-23 21:16:3630 days ago1742764596
0xB5717135...9a96009D6
102,226.0633758 BERA
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
Ohenlo

Compiler Version
v0.8.25+commit.b61c2a91

Optimization Enabled:
Yes with 200 runs

Other Settings:
cancun EvmVersion
File 1 of 12 : Ohenlo.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;

import {ERC20} from "@solady/tokens/ERC20.sol";
import {FixedPointMathLib} from "@solady/utils/FixedPointMathLib.sol";
import {SafeTransferLib} from "@solady/utils/SafeTransferLib.sol";
import {AccessControl} from "@openzeppelin/contracts/access/AccessControl.sol";
import {Pausable} from "@openzeppelin/contracts/utils/Pausable.sol";
import {IOhenloErrors} from "./interfaces/IOhenloErrors.sol";
import {ReentrancyGuard} from "@openzeppelin/contracts/utils/ReentrancyGuard.sol";

/// @title Ohenlo - Option Token for Henlo
/// @notice This contract implements an option token system
/// @dev Inherits from ERC20, AccessControl, Pausable, and ReentrancyGuard
contract Ohenlo is ERC20, AccessControl, Pausable, IOhenloErrors, ReentrancyGuard {
    using FixedPointMathLib for uint256;
    using SafeTransferLib for address;

    /// @notice Role for addresses that can transfer tokens while paused
    bytes32 public constant TRANSFER_WHITELIST = bytes32(uint256(0x01));
    /// @notice Role for addresses that can mint new tokens
    bytes32 public constant MINTER = bytes32(uint256(0x02));
    /// @notice Address of the underlying token contract
    address public immutable token;
    /// @notice Price per token for exercising options
    uint256 public price;
    /// @notice Block number after which options expire
    uint256 public immutable expiredBlock;

    /// @notice Initializes the contract with token address and expiry block
    /// @param _token Address of the underlying token contract
    /// @param _expiredBlock Block number at which options expire
    constructor(address _token, uint256 _expiredBlock) {
        if (_expiredBlock <= block.number) revert OptionExpired();

        expiredBlock = _expiredBlock;
        _grantRole(DEFAULT_ADMIN_ROLE, msg.sender);
        _grantRole(MINTER, msg.sender);
        _grantRole(TRANSFER_WHITELIST, msg.sender);
        _grantRole(TRANSFER_WHITELIST, address(0));

        token = _token;
        _pause();
    }

    function name() public pure override(ERC20) returns (string memory) {
        return "Henlo Option Token";
    }

    function symbol() public pure override(ERC20) returns (string memory) {
        return "oHENLO";
    }

    /// @notice Mints new option tokens to the caller
    /// @dev Only callable by addresses with MINTER role
    /// @param amount The amount of tokens to mint
    function mint(uint256 amount) external onlyRole(MINTER) {
        if (ERC20(token).balanceOf(address(this)) < totalSupply() + amount) {
            revert InsufficientUnderlyingAsset();
        }

        _mint(msg.sender, amount);
    }

    /// @notice Sets the price for exercising options
    /// @dev Only callable by addresses with DEFAULT_ADMIN_ROLE
    /// @param _price The new price per token
    function setPrice(uint256 _price) external onlyRole(DEFAULT_ADMIN_ROLE) {
        price = _price;
    }

    /// @notice Activates the contract by unpausing it
    /// @dev Only callable by addresses with DEFAULT_ADMIN_ROLE
    function active() external onlyRole(DEFAULT_ADMIN_ROLE) {
        if (paused()) {
            _unpause();
        } else {
            _pause();
        }   
    }

    /// @notice Exercises option tokens to receive underlying tokens
    /// @dev Requires ETH payment and burns option tokens
    /// @param amount The amount of options to exercise
    function exercise(uint256 amount) external payable whenNotPaused nonReentrant {
        if (amount == 0) revert ZeroAmount();

        // Check if option hasn't expired
        if (block.number >= expiredBlock) revert OptionExpired();

        // Check if price is set
        if (price <= 0) revert InvalidPrice();

        // Check if caller has enough option tokens
        if (balanceOf(msg.sender) < amount) revert InsufficientBalance();

        // Calculate required value
        uint256 requiredEth = amount.mulWad(price);
        if (msg.value != requiredEth) revert InsufficientETHSent();

        // Burn option tokens
        _burn(msg.sender, amount);

        // Transfer underlying tokens
        ERC20(token).transfer(msg.sender, amount);
    }

    /// @notice Burns all option tokens held by the caller
    function burn() external whenNotPaused nonReentrant {
        uint256 balance = balanceOf(msg.sender);
        if (balance == 0) revert InsufficientBalance();
        _burn(msg.sender, balance);
    }

    /// @notice Allows admin to withdraw all underlying tokens after expiry
    /// @param recipient The address to receive the tokens
    function withdrawUnderlyingTokens(address recipient) external onlyRole(DEFAULT_ADMIN_ROLE) {
        // Ensure options are expired
        if (block.number < expiredBlock) {
            revert OptionsNotExpired();
        }

        // Get the full balance
        uint256 balance = ERC20(token).balanceOf(address(this));

        // Transfer all tokens
        ERC20(token).transfer(recipient, balance);
    }

    /// @notice Allows admin to withdraw all native tokens earned from exercising options
    /// @param recipient The address to receive the native tokens
    function withdrawNativeTokens(address recipient) external onlyRole(DEFAULT_ADMIN_ROLE) {
        // Get the full balance
        uint256 balance = address(this).balance;

        // Transfer all native tokens
        recipient.safeTransferETH(balance);
    }

    function _beforeTokenTransfer(address from, address to, uint256) internal view override {
        bool isBurn = to == address(0);
        if (isBurn) {
            return;
        }

        bool isWhitelist = hasRole(TRANSFER_WHITELIST, from);

        if (!isWhitelist) {
            revert AccessControlUnauthorizedAccount(from, TRANSFER_WHITELIST);
        }
    }
}

File 2 of 12 : ERC20.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Simple ERC20 + EIP-2612 implementation.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/tokens/ERC20.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC20.sol)
/// @author Modified from OpenZeppelin (https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/ERC20.sol)
///
/// @dev Note:
/// - The ERC20 standard allows minting and transferring to and from the zero address,
///   minting and transferring zero tokens, as well as self-approvals.
///   For performance, this implementation WILL NOT revert for such actions.
///   Please add any checks with overrides if desired.
/// - The `permit` function uses the ecrecover precompile (0x1).
///
/// If you are overriding:
/// - NEVER violate the ERC20 invariant:
///   the total sum of all balances must be equal to `totalSupply()`.
/// - Check that the overridden function is actually used in the function you want to
///   change the behavior of. Much of the code has been manually inlined for performance.
abstract contract ERC20 {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       CUSTOM ERRORS                        */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The total supply has overflowed.
    error TotalSupplyOverflow();

    /// @dev The allowance has overflowed.
    error AllowanceOverflow();

    /// @dev The allowance has underflowed.
    error AllowanceUnderflow();

    /// @dev Insufficient balance.
    error InsufficientBalance();

    /// @dev Insufficient allowance.
    error InsufficientAllowance();

    /// @dev The permit is invalid.
    error InvalidPermit();

    /// @dev The permit has expired.
    error PermitExpired();

    /// @dev The allowance of Permit2 is fixed at infinity.
    error Permit2AllowanceIsFixedAtInfinity();

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                           EVENTS                           */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Emitted when `amount` tokens is transferred from `from` to `to`.
    event Transfer(address indexed from, address indexed to, uint256 amount);

    /// @dev Emitted when `amount` tokens is approved by `owner` to be used by `spender`.
    event Approval(address indexed owner, address indexed spender, uint256 amount);

    /// @dev `keccak256(bytes("Transfer(address,address,uint256)"))`.
    uint256 private constant _TRANSFER_EVENT_SIGNATURE =
        0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef;

    /// @dev `keccak256(bytes("Approval(address,address,uint256)"))`.
    uint256 private constant _APPROVAL_EVENT_SIGNATURE =
        0x8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                          STORAGE                           */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The storage slot for the total supply.
    uint256 private constant _TOTAL_SUPPLY_SLOT = 0x05345cdf77eb68f44c;

    /// @dev The balance slot of `owner` is given by:
    /// ```
    ///     mstore(0x0c, _BALANCE_SLOT_SEED)
    ///     mstore(0x00, owner)
    ///     let balanceSlot := keccak256(0x0c, 0x20)
    /// ```
    uint256 private constant _BALANCE_SLOT_SEED = 0x87a211a2;

    /// @dev The allowance slot of (`owner`, `spender`) is given by:
    /// ```
    ///     mstore(0x20, spender)
    ///     mstore(0x0c, _ALLOWANCE_SLOT_SEED)
    ///     mstore(0x00, owner)
    ///     let allowanceSlot := keccak256(0x0c, 0x34)
    /// ```
    uint256 private constant _ALLOWANCE_SLOT_SEED = 0x7f5e9f20;

    /// @dev The nonce slot of `owner` is given by:
    /// ```
    ///     mstore(0x0c, _NONCES_SLOT_SEED)
    ///     mstore(0x00, owner)
    ///     let nonceSlot := keccak256(0x0c, 0x20)
    /// ```
    uint256 private constant _NONCES_SLOT_SEED = 0x38377508;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                         CONSTANTS                          */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev `(_NONCES_SLOT_SEED << 16) | 0x1901`.
    uint256 private constant _NONCES_SLOT_SEED_WITH_SIGNATURE_PREFIX = 0x383775081901;

    /// @dev `keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)")`.
    bytes32 private constant _DOMAIN_TYPEHASH =
        0x8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f;

    /// @dev `keccak256("1")`.
    /// If you need to use a different version, override `_versionHash`.
    bytes32 private constant _DEFAULT_VERSION_HASH =
        0xc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc6;

    /// @dev `keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)")`.
    bytes32 private constant _PERMIT_TYPEHASH =
        0x6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9;

    /// @dev The canonical Permit2 address.
    /// For signature-based allowance granting for single transaction ERC20 `transferFrom`.
    /// To enable, override `_givePermit2InfiniteAllowance()`.
    /// [Github](https://github.com/Uniswap/permit2)
    /// [Etherscan](https://etherscan.io/address/0x000000000022D473030F116dDEE9F6B43aC78BA3)
    address internal constant _PERMIT2 = 0x000000000022D473030F116dDEE9F6B43aC78BA3;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       ERC20 METADATA                       */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns the name of the token.
    function name() public view virtual returns (string memory);

    /// @dev Returns the symbol of the token.
    function symbol() public view virtual returns (string memory);

    /// @dev Returns the decimals places of the token.
    function decimals() public view virtual returns (uint8) {
        return 18;
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                           ERC20                            */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns the amount of tokens in existence.
    function totalSupply() public view virtual returns (uint256 result) {
        /// @solidity memory-safe-assembly
        assembly {
            result := sload(_TOTAL_SUPPLY_SLOT)
        }
    }

    /// @dev Returns the amount of tokens owned by `owner`.
    function balanceOf(address owner) public view virtual returns (uint256 result) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x0c, _BALANCE_SLOT_SEED)
            mstore(0x00, owner)
            result := sload(keccak256(0x0c, 0x20))
        }
    }

    /// @dev Returns the amount of tokens that `spender` can spend on behalf of `owner`.
    function allowance(address owner, address spender)
        public
        view
        virtual
        returns (uint256 result)
    {
        if (_givePermit2InfiniteAllowance()) {
            if (spender == _PERMIT2) return type(uint256).max;
        }
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x20, spender)
            mstore(0x0c, _ALLOWANCE_SLOT_SEED)
            mstore(0x00, owner)
            result := sload(keccak256(0x0c, 0x34))
        }
    }

    /// @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
    ///
    /// Emits a {Approval} event.
    function approve(address spender, uint256 amount) public virtual returns (bool) {
        if (_givePermit2InfiniteAllowance()) {
            /// @solidity memory-safe-assembly
            assembly {
                // If `spender == _PERMIT2 && amount != type(uint256).max`.
                if iszero(or(xor(shr(96, shl(96, spender)), _PERMIT2), iszero(not(amount)))) {
                    mstore(0x00, 0x3f68539a) // `Permit2AllowanceIsFixedAtInfinity()`.
                    revert(0x1c, 0x04)
                }
            }
        }
        /// @solidity memory-safe-assembly
        assembly {
            // Compute the allowance slot and store the amount.
            mstore(0x20, spender)
            mstore(0x0c, _ALLOWANCE_SLOT_SEED)
            mstore(0x00, caller())
            sstore(keccak256(0x0c, 0x34), amount)
            // Emit the {Approval} event.
            mstore(0x00, amount)
            log3(0x00, 0x20, _APPROVAL_EVENT_SIGNATURE, caller(), shr(96, mload(0x2c)))
        }
        return true;
    }

    /// @dev Transfer `amount` tokens from the caller to `to`.
    ///
    /// Requirements:
    /// - `from` must at least have `amount`.
    ///
    /// Emits a {Transfer} event.
    function transfer(address to, uint256 amount) public virtual returns (bool) {
        _beforeTokenTransfer(msg.sender, to, amount);
        /// @solidity memory-safe-assembly
        assembly {
            // Compute the balance slot and load its value.
            mstore(0x0c, _BALANCE_SLOT_SEED)
            mstore(0x00, caller())
            let fromBalanceSlot := keccak256(0x0c, 0x20)
            let fromBalance := sload(fromBalanceSlot)
            // Revert if insufficient balance.
            if gt(amount, fromBalance) {
                mstore(0x00, 0xf4d678b8) // `InsufficientBalance()`.
                revert(0x1c, 0x04)
            }
            // Subtract and store the updated balance.
            sstore(fromBalanceSlot, sub(fromBalance, amount))
            // Compute the balance slot of `to`.
            mstore(0x00, to)
            let toBalanceSlot := keccak256(0x0c, 0x20)
            // Add and store the updated balance of `to`.
            // Will not overflow because the sum of all user balances
            // cannot exceed the maximum uint256 value.
            sstore(toBalanceSlot, add(sload(toBalanceSlot), amount))
            // Emit the {Transfer} event.
            mstore(0x20, amount)
            log3(0x20, 0x20, _TRANSFER_EVENT_SIGNATURE, caller(), shr(96, mload(0x0c)))
        }
        _afterTokenTransfer(msg.sender, to, amount);
        return true;
    }

    /// @dev Transfers `amount` tokens from `from` to `to`.
    ///
    /// Note: Does not update the allowance if it is the maximum uint256 value.
    ///
    /// Requirements:
    /// - `from` must at least have `amount`.
    /// - The caller must have at least `amount` of allowance to transfer the tokens of `from`.
    ///
    /// Emits a {Transfer} event.
    function transferFrom(address from, address to, uint256 amount) public virtual returns (bool) {
        _beforeTokenTransfer(from, to, amount);
        // Code duplication is for zero-cost abstraction if possible.
        if (_givePermit2InfiniteAllowance()) {
            /// @solidity memory-safe-assembly
            assembly {
                let from_ := shl(96, from)
                if iszero(eq(caller(), _PERMIT2)) {
                    // Compute the allowance slot and load its value.
                    mstore(0x20, caller())
                    mstore(0x0c, or(from_, _ALLOWANCE_SLOT_SEED))
                    let allowanceSlot := keccak256(0x0c, 0x34)
                    let allowance_ := sload(allowanceSlot)
                    // If the allowance is not the maximum uint256 value.
                    if not(allowance_) {
                        // Revert if the amount to be transferred exceeds the allowance.
                        if gt(amount, allowance_) {
                            mstore(0x00, 0x13be252b) // `InsufficientAllowance()`.
                            revert(0x1c, 0x04)
                        }
                        // Subtract and store the updated allowance.
                        sstore(allowanceSlot, sub(allowance_, amount))
                    }
                }
                // Compute the balance slot and load its value.
                mstore(0x0c, or(from_, _BALANCE_SLOT_SEED))
                let fromBalanceSlot := keccak256(0x0c, 0x20)
                let fromBalance := sload(fromBalanceSlot)
                // Revert if insufficient balance.
                if gt(amount, fromBalance) {
                    mstore(0x00, 0xf4d678b8) // `InsufficientBalance()`.
                    revert(0x1c, 0x04)
                }
                // Subtract and store the updated balance.
                sstore(fromBalanceSlot, sub(fromBalance, amount))
                // Compute the balance slot of `to`.
                mstore(0x00, to)
                let toBalanceSlot := keccak256(0x0c, 0x20)
                // Add and store the updated balance of `to`.
                // Will not overflow because the sum of all user balances
                // cannot exceed the maximum uint256 value.
                sstore(toBalanceSlot, add(sload(toBalanceSlot), amount))
                // Emit the {Transfer} event.
                mstore(0x20, amount)
                log3(0x20, 0x20, _TRANSFER_EVENT_SIGNATURE, shr(96, from_), shr(96, mload(0x0c)))
            }
        } else {
            /// @solidity memory-safe-assembly
            assembly {
                let from_ := shl(96, from)
                // Compute the allowance slot and load its value.
                mstore(0x20, caller())
                mstore(0x0c, or(from_, _ALLOWANCE_SLOT_SEED))
                let allowanceSlot := keccak256(0x0c, 0x34)
                let allowance_ := sload(allowanceSlot)
                // If the allowance is not the maximum uint256 value.
                if not(allowance_) {
                    // Revert if the amount to be transferred exceeds the allowance.
                    if gt(amount, allowance_) {
                        mstore(0x00, 0x13be252b) // `InsufficientAllowance()`.
                        revert(0x1c, 0x04)
                    }
                    // Subtract and store the updated allowance.
                    sstore(allowanceSlot, sub(allowance_, amount))
                }
                // Compute the balance slot and load its value.
                mstore(0x0c, or(from_, _BALANCE_SLOT_SEED))
                let fromBalanceSlot := keccak256(0x0c, 0x20)
                let fromBalance := sload(fromBalanceSlot)
                // Revert if insufficient balance.
                if gt(amount, fromBalance) {
                    mstore(0x00, 0xf4d678b8) // `InsufficientBalance()`.
                    revert(0x1c, 0x04)
                }
                // Subtract and store the updated balance.
                sstore(fromBalanceSlot, sub(fromBalance, amount))
                // Compute the balance slot of `to`.
                mstore(0x00, to)
                let toBalanceSlot := keccak256(0x0c, 0x20)
                // Add and store the updated balance of `to`.
                // Will not overflow because the sum of all user balances
                // cannot exceed the maximum uint256 value.
                sstore(toBalanceSlot, add(sload(toBalanceSlot), amount))
                // Emit the {Transfer} event.
                mstore(0x20, amount)
                log3(0x20, 0x20, _TRANSFER_EVENT_SIGNATURE, shr(96, from_), shr(96, mload(0x0c)))
            }
        }
        _afterTokenTransfer(from, to, amount);
        return true;
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                          EIP-2612                          */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev For more performance, override to return the constant value
    /// of `keccak256(bytes(name()))` if `name()` will never change.
    function _constantNameHash() internal view virtual returns (bytes32 result) {}

    /// @dev If you need a different value, override this function.
    function _versionHash() internal view virtual returns (bytes32 result) {
        result = _DEFAULT_VERSION_HASH;
    }

    /// @dev For inheriting contracts to increment the nonce.
    function _incrementNonce(address owner) internal virtual {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x0c, _NONCES_SLOT_SEED)
            mstore(0x00, owner)
            let nonceSlot := keccak256(0x0c, 0x20)
            sstore(nonceSlot, add(1, sload(nonceSlot)))
        }
    }

    /// @dev Returns the current nonce for `owner`.
    /// This value is used to compute the signature for EIP-2612 permit.
    function nonces(address owner) public view virtual returns (uint256 result) {
        /// @solidity memory-safe-assembly
        assembly {
            // Compute the nonce slot and load its value.
            mstore(0x0c, _NONCES_SLOT_SEED)
            mstore(0x00, owner)
            result := sload(keccak256(0x0c, 0x20))
        }
    }

    /// @dev Sets `value` as the allowance of `spender` over the tokens of `owner`,
    /// authorized by a signed approval by `owner`.
    ///
    /// Emits a {Approval} event.
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) public virtual {
        if (_givePermit2InfiniteAllowance()) {
            /// @solidity memory-safe-assembly
            assembly {
                // If `spender == _PERMIT2 && value != type(uint256).max`.
                if iszero(or(xor(shr(96, shl(96, spender)), _PERMIT2), iszero(not(value)))) {
                    mstore(0x00, 0x3f68539a) // `Permit2AllowanceIsFixedAtInfinity()`.
                    revert(0x1c, 0x04)
                }
            }
        }
        bytes32 nameHash = _constantNameHash();
        //  We simply calculate it on-the-fly to allow for cases where the `name` may change.
        if (nameHash == bytes32(0)) nameHash = keccak256(bytes(name()));
        bytes32 versionHash = _versionHash();
        /// @solidity memory-safe-assembly
        assembly {
            // Revert if the block timestamp is greater than `deadline`.
            if gt(timestamp(), deadline) {
                mstore(0x00, 0x1a15a3cc) // `PermitExpired()`.
                revert(0x1c, 0x04)
            }
            let m := mload(0x40) // Grab the free memory pointer.
            // Clean the upper 96 bits.
            owner := shr(96, shl(96, owner))
            spender := shr(96, shl(96, spender))
            // Compute the nonce slot and load its value.
            mstore(0x0e, _NONCES_SLOT_SEED_WITH_SIGNATURE_PREFIX)
            mstore(0x00, owner)
            let nonceSlot := keccak256(0x0c, 0x20)
            let nonceValue := sload(nonceSlot)
            // Prepare the domain separator.
            mstore(m, _DOMAIN_TYPEHASH)
            mstore(add(m, 0x20), nameHash)
            mstore(add(m, 0x40), versionHash)
            mstore(add(m, 0x60), chainid())
            mstore(add(m, 0x80), address())
            mstore(0x2e, keccak256(m, 0xa0))
            // Prepare the struct hash.
            mstore(m, _PERMIT_TYPEHASH)
            mstore(add(m, 0x20), owner)
            mstore(add(m, 0x40), spender)
            mstore(add(m, 0x60), value)
            mstore(add(m, 0x80), nonceValue)
            mstore(add(m, 0xa0), deadline)
            mstore(0x4e, keccak256(m, 0xc0))
            // Prepare the ecrecover calldata.
            mstore(0x00, keccak256(0x2c, 0x42))
            mstore(0x20, and(0xff, v))
            mstore(0x40, r)
            mstore(0x60, s)
            let t := staticcall(gas(), 1, 0x00, 0x80, 0x20, 0x20)
            // If the ecrecover fails, the returndatasize will be 0x00,
            // `owner` will be checked if it equals the hash at 0x00,
            // which evaluates to false (i.e. 0), and we will revert.
            // If the ecrecover succeeds, the returndatasize will be 0x20,
            // `owner` will be compared against the returned address at 0x20.
            if iszero(eq(mload(returndatasize()), owner)) {
                mstore(0x00, 0xddafbaef) // `InvalidPermit()`.
                revert(0x1c, 0x04)
            }
            // Increment and store the updated nonce.
            sstore(nonceSlot, add(nonceValue, t)) // `t` is 1 if ecrecover succeeds.
            // Compute the allowance slot and store the value.
            // The `owner` is already at slot 0x20.
            mstore(0x40, or(shl(160, _ALLOWANCE_SLOT_SEED), spender))
            sstore(keccak256(0x2c, 0x34), value)
            // Emit the {Approval} event.
            log3(add(m, 0x60), 0x20, _APPROVAL_EVENT_SIGNATURE, owner, spender)
            mstore(0x40, m) // Restore the free memory pointer.
            mstore(0x60, 0) // Restore the zero pointer.
        }
    }

    /// @dev Returns the EIP-712 domain separator for the EIP-2612 permit.
    function DOMAIN_SEPARATOR() public view virtual returns (bytes32 result) {
        bytes32 nameHash = _constantNameHash();
        //  We simply calculate it on-the-fly to allow for cases where the `name` may change.
        if (nameHash == bytes32(0)) nameHash = keccak256(bytes(name()));
        bytes32 versionHash = _versionHash();
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40) // Grab the free memory pointer.
            mstore(m, _DOMAIN_TYPEHASH)
            mstore(add(m, 0x20), nameHash)
            mstore(add(m, 0x40), versionHash)
            mstore(add(m, 0x60), chainid())
            mstore(add(m, 0x80), address())
            result := keccak256(m, 0xa0)
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                  INTERNAL MINT FUNCTIONS                   */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Mints `amount` tokens to `to`, increasing the total supply.
    ///
    /// Emits a {Transfer} event.
    function _mint(address to, uint256 amount) internal virtual {
        _beforeTokenTransfer(address(0), to, amount);
        /// @solidity memory-safe-assembly
        assembly {
            let totalSupplyBefore := sload(_TOTAL_SUPPLY_SLOT)
            let totalSupplyAfter := add(totalSupplyBefore, amount)
            // Revert if the total supply overflows.
            if lt(totalSupplyAfter, totalSupplyBefore) {
                mstore(0x00, 0xe5cfe957) // `TotalSupplyOverflow()`.
                revert(0x1c, 0x04)
            }
            // Store the updated total supply.
            sstore(_TOTAL_SUPPLY_SLOT, totalSupplyAfter)
            // Compute the balance slot and load its value.
            mstore(0x0c, _BALANCE_SLOT_SEED)
            mstore(0x00, to)
            let toBalanceSlot := keccak256(0x0c, 0x20)
            // Add and store the updated balance.
            sstore(toBalanceSlot, add(sload(toBalanceSlot), amount))
            // Emit the {Transfer} event.
            mstore(0x20, amount)
            log3(0x20, 0x20, _TRANSFER_EVENT_SIGNATURE, 0, shr(96, mload(0x0c)))
        }
        _afterTokenTransfer(address(0), to, amount);
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                  INTERNAL BURN FUNCTIONS                   */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Burns `amount` tokens from `from`, reducing the total supply.
    ///
    /// Emits a {Transfer} event.
    function _burn(address from, uint256 amount) internal virtual {
        _beforeTokenTransfer(from, address(0), amount);
        /// @solidity memory-safe-assembly
        assembly {
            // Compute the balance slot and load its value.
            mstore(0x0c, _BALANCE_SLOT_SEED)
            mstore(0x00, from)
            let fromBalanceSlot := keccak256(0x0c, 0x20)
            let fromBalance := sload(fromBalanceSlot)
            // Revert if insufficient balance.
            if gt(amount, fromBalance) {
                mstore(0x00, 0xf4d678b8) // `InsufficientBalance()`.
                revert(0x1c, 0x04)
            }
            // Subtract and store the updated balance.
            sstore(fromBalanceSlot, sub(fromBalance, amount))
            // Subtract and store the updated total supply.
            sstore(_TOTAL_SUPPLY_SLOT, sub(sload(_TOTAL_SUPPLY_SLOT), amount))
            // Emit the {Transfer} event.
            mstore(0x00, amount)
            log3(0x00, 0x20, _TRANSFER_EVENT_SIGNATURE, shr(96, shl(96, from)), 0)
        }
        _afterTokenTransfer(from, address(0), amount);
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                INTERNAL TRANSFER FUNCTIONS                 */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Moves `amount` of tokens from `from` to `to`.
    function _transfer(address from, address to, uint256 amount) internal virtual {
        _beforeTokenTransfer(from, to, amount);
        /// @solidity memory-safe-assembly
        assembly {
            let from_ := shl(96, from)
            // Compute the balance slot and load its value.
            mstore(0x0c, or(from_, _BALANCE_SLOT_SEED))
            let fromBalanceSlot := keccak256(0x0c, 0x20)
            let fromBalance := sload(fromBalanceSlot)
            // Revert if insufficient balance.
            if gt(amount, fromBalance) {
                mstore(0x00, 0xf4d678b8) // `InsufficientBalance()`.
                revert(0x1c, 0x04)
            }
            // Subtract and store the updated balance.
            sstore(fromBalanceSlot, sub(fromBalance, amount))
            // Compute the balance slot of `to`.
            mstore(0x00, to)
            let toBalanceSlot := keccak256(0x0c, 0x20)
            // Add and store the updated balance of `to`.
            // Will not overflow because the sum of all user balances
            // cannot exceed the maximum uint256 value.
            sstore(toBalanceSlot, add(sload(toBalanceSlot), amount))
            // Emit the {Transfer} event.
            mstore(0x20, amount)
            log3(0x20, 0x20, _TRANSFER_EVENT_SIGNATURE, shr(96, from_), shr(96, mload(0x0c)))
        }
        _afterTokenTransfer(from, to, amount);
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                INTERNAL ALLOWANCE FUNCTIONS                */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Updates the allowance of `owner` for `spender` based on spent `amount`.
    function _spendAllowance(address owner, address spender, uint256 amount) internal virtual {
        if (_givePermit2InfiniteAllowance()) {
            if (spender == _PERMIT2) return; // Do nothing, as allowance is infinite.
        }
        /// @solidity memory-safe-assembly
        assembly {
            // Compute the allowance slot and load its value.
            mstore(0x20, spender)
            mstore(0x0c, _ALLOWANCE_SLOT_SEED)
            mstore(0x00, owner)
            let allowanceSlot := keccak256(0x0c, 0x34)
            let allowance_ := sload(allowanceSlot)
            // If the allowance is not the maximum uint256 value.
            if not(allowance_) {
                // Revert if the amount to be transferred exceeds the allowance.
                if gt(amount, allowance_) {
                    mstore(0x00, 0x13be252b) // `InsufficientAllowance()`.
                    revert(0x1c, 0x04)
                }
                // Subtract and store the updated allowance.
                sstore(allowanceSlot, sub(allowance_, amount))
            }
        }
    }

    /// @dev Sets `amount` as the allowance of `spender` over the tokens of `owner`.
    ///
    /// Emits a {Approval} event.
    function _approve(address owner, address spender, uint256 amount) internal virtual {
        if (_givePermit2InfiniteAllowance()) {
            /// @solidity memory-safe-assembly
            assembly {
                // If `spender == _PERMIT2 && amount != type(uint256).max`.
                if iszero(or(xor(shr(96, shl(96, spender)), _PERMIT2), iszero(not(amount)))) {
                    mstore(0x00, 0x3f68539a) // `Permit2AllowanceIsFixedAtInfinity()`.
                    revert(0x1c, 0x04)
                }
            }
        }
        /// @solidity memory-safe-assembly
        assembly {
            let owner_ := shl(96, owner)
            // Compute the allowance slot and store the amount.
            mstore(0x20, spender)
            mstore(0x0c, or(owner_, _ALLOWANCE_SLOT_SEED))
            sstore(keccak256(0x0c, 0x34), amount)
            // Emit the {Approval} event.
            mstore(0x00, amount)
            log3(0x00, 0x20, _APPROVAL_EVENT_SIGNATURE, shr(96, owner_), shr(96, mload(0x2c)))
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                     HOOKS TO OVERRIDE                      */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Hook that is called before any transfer of tokens.
    /// This includes minting and burning.
    function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual {}

    /// @dev Hook that is called after any transfer of tokens.
    /// This includes minting and burning.
    function _afterTokenTransfer(address from, address to, uint256 amount) internal virtual {}

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                          PERMIT2                           */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns whether to fix the Permit2 contract's allowance at infinity.
    ///
    /// This value should be kept constant after contract initialization,
    /// or else the actual allowance values may not match with the {Approval} events.
    /// For best performance, return a compile-time constant for zero-cost abstraction.
    function _givePermit2InfiniteAllowance() internal view virtual returns (bool) {
        return false;
    }
}

File 3 of 12 : FixedPointMathLib.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Arithmetic library with operations for fixed-point numbers.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/FixedPointMathLib.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/FixedPointMathLib.sol)
library FixedPointMathLib {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       CUSTOM ERRORS                        */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The operation failed, as the output exceeds the maximum value of uint256.
    error ExpOverflow();

    /// @dev The operation failed, as the output exceeds the maximum value of uint256.
    error FactorialOverflow();

    /// @dev The operation failed, due to an overflow.
    error RPowOverflow();

    /// @dev The mantissa is too big to fit.
    error MantissaOverflow();

    /// @dev The operation failed, due to an multiplication overflow.
    error MulWadFailed();

    /// @dev The operation failed, due to an multiplication overflow.
    error SMulWadFailed();

    /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero.
    error DivWadFailed();

    /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero.
    error SDivWadFailed();

    /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero.
    error MulDivFailed();

    /// @dev The division failed, as the denominator is zero.
    error DivFailed();

    /// @dev The full precision multiply-divide operation failed, either due
    /// to the result being larger than 256 bits, or a division by a zero.
    error FullMulDivFailed();

    /// @dev The output is undefined, as the input is less-than-or-equal to zero.
    error LnWadUndefined();

    /// @dev The input outside the acceptable domain.
    error OutOfDomain();

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                         CONSTANTS                          */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The scalar of ETH and most ERC20s.
    uint256 internal constant WAD = 1e18;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*              SIMPLIFIED FIXED POINT OPERATIONS             */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Equivalent to `(x * y) / WAD` rounded down.
    function mulWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to `require(y == 0 || x <= type(uint256).max / y)`.
            if gt(x, div(not(0), y)) {
                if y {
                    mstore(0x00, 0xbac65e5b) // `MulWadFailed()`.
                    revert(0x1c, 0x04)
                }
            }
            z := div(mul(x, y), WAD)
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded down.
    function sMulWad(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, y)
            // Equivalent to `require((x == 0 || z / x == y) && !(x == -1 && y == type(int256).min))`.
            if iszero(gt(or(iszero(x), eq(sdiv(z, x), y)), lt(not(x), eq(y, shl(255, 1))))) {
                mstore(0x00, 0xedcd4dd4) // `SMulWadFailed()`.
                revert(0x1c, 0x04)
            }
            z := sdiv(z, WAD)
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded down, but without overflow checks.
    function rawMulWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := div(mul(x, y), WAD)
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded down, but without overflow checks.
    function rawSMulWad(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := sdiv(mul(x, y), WAD)
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded up.
    function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, y)
            // Equivalent to `require(y == 0 || x <= type(uint256).max / y)`.
            if iszero(eq(div(z, y), x)) {
                if y {
                    mstore(0x00, 0xbac65e5b) // `MulWadFailed()`.
                    revert(0x1c, 0x04)
                }
            }
            z := add(iszero(iszero(mod(z, WAD))), div(z, WAD))
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded up, but without overflow checks.
    function rawMulWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := add(iszero(iszero(mod(mul(x, y), WAD))), div(mul(x, y), WAD))
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded down.
    function divWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to `require(y != 0 && x <= type(uint256).max / WAD)`.
            if iszero(mul(y, lt(x, add(1, div(not(0), WAD))))) {
                mstore(0x00, 0x7c5f487d) // `DivWadFailed()`.
                revert(0x1c, 0x04)
            }
            z := div(mul(x, WAD), y)
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded down.
    function sDivWad(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, WAD)
            // Equivalent to `require(y != 0 && ((x * WAD) / WAD == x))`.
            if iszero(mul(y, eq(sdiv(z, WAD), x))) {
                mstore(0x00, 0x5c43740d) // `SDivWadFailed()`.
                revert(0x1c, 0x04)
            }
            z := sdiv(z, y)
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded down, but without overflow and divide by zero checks.
    function rawDivWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := div(mul(x, WAD), y)
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded down, but without overflow and divide by zero checks.
    function rawSDivWad(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := sdiv(mul(x, WAD), y)
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded up.
    function divWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to `require(y != 0 && x <= type(uint256).max / WAD)`.
            if iszero(mul(y, lt(x, add(1, div(not(0), WAD))))) {
                mstore(0x00, 0x7c5f487d) // `DivWadFailed()`.
                revert(0x1c, 0x04)
            }
            z := add(iszero(iszero(mod(mul(x, WAD), y))), div(mul(x, WAD), y))
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded up, but without overflow and divide by zero checks.
    function rawDivWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := add(iszero(iszero(mod(mul(x, WAD), y))), div(mul(x, WAD), y))
        }
    }

    /// @dev Equivalent to `x` to the power of `y`.
    /// because `x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)`.
    /// Note: This function is an approximation.
    function powWad(int256 x, int256 y) internal pure returns (int256) {
        // Using `ln(x)` means `x` must be greater than 0.
        return expWad((lnWad(x) * y) / int256(WAD));
    }

    /// @dev Returns `exp(x)`, denominated in `WAD`.
    /// Credit to Remco Bloemen under MIT license: https://2π.com/22/exp-ln
    /// Note: This function is an approximation. Monotonically increasing.
    function expWad(int256 x) internal pure returns (int256 r) {
        unchecked {
            // When the result is less than 0.5 we return zero.
            // This happens when `x <= (log(1e-18) * 1e18) ~ -4.15e19`.
            if (x <= -41446531673892822313) return r;

            /// @solidity memory-safe-assembly
            assembly {
                // When the result is greater than `(2**255 - 1) / 1e18` we can not represent it as
                // an int. This happens when `x >= floor(log((2**255 - 1) / 1e18) * 1e18) ≈ 135`.
                if iszero(slt(x, 135305999368893231589)) {
                    mstore(0x00, 0xa37bfec9) // `ExpOverflow()`.
                    revert(0x1c, 0x04)
                }
            }

            // `x` is now in the range `(-42, 136) * 1e18`. Convert to `(-42, 136) * 2**96`
            // for more intermediate precision and a binary basis. This base conversion
            // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
            x = (x << 78) / 5 ** 18;

            // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
            // of two such that exp(x) = exp(x') * 2**k, where k is an integer.
            // Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
            int256 k = ((x << 96) / 54916777467707473351141471128 + 2 ** 95) >> 96;
            x = x - k * 54916777467707473351141471128;

            // `k` is in the range `[-61, 195]`.

            // Evaluate using a (6, 7)-term rational approximation.
            // `p` is made monic, we'll multiply by a scale factor later.
            int256 y = x + 1346386616545796478920950773328;
            y = ((y * x) >> 96) + 57155421227552351082224309758442;
            int256 p = y + x - 94201549194550492254356042504812;
            p = ((p * y) >> 96) + 28719021644029726153956944680412240;
            p = p * x + (4385272521454847904659076985693276 << 96);

            // We leave `p` in `2**192` basis so we don't need to scale it back up for the division.
            int256 q = x - 2855989394907223263936484059900;
            q = ((q * x) >> 96) + 50020603652535783019961831881945;
            q = ((q * x) >> 96) - 533845033583426703283633433725380;
            q = ((q * x) >> 96) + 3604857256930695427073651918091429;
            q = ((q * x) >> 96) - 14423608567350463180887372962807573;
            q = ((q * x) >> 96) + 26449188498355588339934803723976023;

            /// @solidity memory-safe-assembly
            assembly {
                // Div in assembly because solidity adds a zero check despite the unchecked.
                // The q polynomial won't have zeros in the domain as all its roots are complex.
                // No scaling is necessary because p is already `2**96` too large.
                r := sdiv(p, q)
            }

            // r should be in the range `(0.09, 0.25) * 2**96`.

            // We now need to multiply r by:
            // - The scale factor `s ≈ 6.031367120`.
            // - The `2**k` factor from the range reduction.
            // - The `1e18 / 2**96` factor for base conversion.
            // We do this all at once, with an intermediate result in `2**213`
            // basis, so the final right shift is always by a positive amount.
            r = int256(
                (uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k)
            );
        }
    }

    /// @dev Returns `ln(x)`, denominated in `WAD`.
    /// Credit to Remco Bloemen under MIT license: https://2π.com/22/exp-ln
    /// Note: This function is an approximation. Monotonically increasing.
    function lnWad(int256 x) internal pure returns (int256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            // We want to convert `x` from `10**18` fixed point to `2**96` fixed point.
            // We do this by multiplying by `2**96 / 10**18`. But since
            // `ln(x * C) = ln(x) + ln(C)`, we can simply do nothing here
            // and add `ln(2**96 / 10**18)` at the end.

            // Compute `k = log2(x) - 96`, `r = 159 - k = 255 - log2(x) = 255 ^ log2(x)`.
            r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(r, shl(3, lt(0xff, shr(r, x))))
            // We place the check here for more optimal stack operations.
            if iszero(sgt(x, 0)) {
                mstore(0x00, 0x1615e638) // `LnWadUndefined()`.
                revert(0x1c, 0x04)
            }
            // forgefmt: disable-next-item
            r := xor(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)),
                0xf8f9f9faf9fdfafbf9fdfcfdfafbfcfef9fafdfafcfcfbfefafafcfbffffffff))

            // Reduce range of x to (1, 2) * 2**96
            // ln(2^k * x) = k * ln(2) + ln(x)
            x := shr(159, shl(r, x))

            // Evaluate using a (8, 8)-term rational approximation.
            // `p` is made monic, we will multiply by a scale factor later.
            // forgefmt: disable-next-item
            let p := sub( // This heavily nested expression is to avoid stack-too-deep for via-ir.
                sar(96, mul(add(43456485725739037958740375743393,
                sar(96, mul(add(24828157081833163892658089445524,
                sar(96, mul(add(3273285459638523848632254066296,
                    x), x))), x))), x)), 11111509109440967052023855526967)
            p := sub(sar(96, mul(p, x)), 45023709667254063763336534515857)
            p := sub(sar(96, mul(p, x)), 14706773417378608786704636184526)
            p := sub(mul(p, x), shl(96, 795164235651350426258249787498))
            // We leave `p` in `2**192` basis so we don't need to scale it back up for the division.

            // `q` is monic by convention.
            let q := add(5573035233440673466300451813936, x)
            q := add(71694874799317883764090561454958, sar(96, mul(x, q)))
            q := add(283447036172924575727196451306956, sar(96, mul(x, q)))
            q := add(401686690394027663651624208769553, sar(96, mul(x, q)))
            q := add(204048457590392012362485061816622, sar(96, mul(x, q)))
            q := add(31853899698501571402653359427138, sar(96, mul(x, q)))
            q := add(909429971244387300277376558375, sar(96, mul(x, q)))

            // `p / q` is in the range `(0, 0.125) * 2**96`.

            // Finalization, we need to:
            // - Multiply by the scale factor `s = 5.549…`.
            // - Add `ln(2**96 / 10**18)`.
            // - Add `k * ln(2)`.
            // - Multiply by `10**18 / 2**96 = 5**18 >> 78`.

            // The q polynomial is known not to have zeros in the domain.
            // No scaling required because p is already `2**96` too large.
            p := sdiv(p, q)
            // Multiply by the scaling factor: `s * 5**18 * 2**96`, base is now `5**18 * 2**192`.
            p := mul(1677202110996718588342820967067443963516166, p)
            // Add `ln(2) * k * 5**18 * 2**192`.
            // forgefmt: disable-next-item
            p := add(mul(16597577552685614221487285958193947469193820559219878177908093499208371, sub(159, r)), p)
            // Add `ln(2**96 / 10**18) * 5**18 * 2**192`.
            p := add(600920179829731861736702779321621459595472258049074101567377883020018308, p)
            // Base conversion: mul `2**18 / 2**192`.
            r := sar(174, p)
        }
    }

    /// @dev Returns `W_0(x)`, denominated in `WAD`.
    /// See: https://en.wikipedia.org/wiki/Lambert_W_function
    /// a.k.a. Product log function. This is an approximation of the principal branch.
    /// Note: This function is an approximation. Monotonically increasing.
    function lambertW0Wad(int256 x) internal pure returns (int256 w) {
        // forgefmt: disable-next-item
        unchecked {
            if ((w = x) <= -367879441171442322) revert OutOfDomain(); // `x` less than `-1/e`.
            (int256 wad, int256 p) = (int256(WAD), x);
            uint256 c; // Whether we need to avoid catastrophic cancellation.
            uint256 i = 4; // Number of iterations.
            if (w <= 0x1ffffffffffff) {
                if (-0x4000000000000 <= w) {
                    i = 1; // Inputs near zero only take one step to converge.
                } else if (w <= -0x3ffffffffffffff) {
                    i = 32; // Inputs near `-1/e` take very long to converge.
                }
            } else if (uint256(w >> 63) == uint256(0)) {
                /// @solidity memory-safe-assembly
                assembly {
                    // Inline log2 for more performance, since the range is small.
                    let v := shr(49, w)
                    let l := shl(3, lt(0xff, v))
                    l := add(or(l, byte(and(0x1f, shr(shr(l, v), 0x8421084210842108cc6318c6db6d54be)),
                        0x0706060506020504060203020504030106050205030304010505030400000000)), 49)
                    w := sdiv(shl(l, 7), byte(sub(l, 31), 0x0303030303030303040506080c13))
                    c := gt(l, 60)
                    i := add(2, add(gt(l, 53), c))
                }
            } else {
                int256 ll = lnWad(w = lnWad(w));
                /// @solidity memory-safe-assembly
                assembly {
                    // `w = ln(x) - ln(ln(x)) + b * ln(ln(x)) / ln(x)`.
                    w := add(sdiv(mul(ll, 1023715080943847266), w), sub(w, ll))
                    i := add(3, iszero(shr(68, x)))
                    c := iszero(shr(143, x))
                }
                if (c == uint256(0)) {
                    do { // If `x` is big, use Newton's so that intermediate values won't overflow.
                        int256 e = expWad(w);
                        /// @solidity memory-safe-assembly
                        assembly {
                            let t := mul(w, div(e, wad))
                            w := sub(w, sdiv(sub(t, x), div(add(e, t), wad)))
                        }
                        if (p <= w) break;
                        p = w;
                    } while (--i != uint256(0));
                    /// @solidity memory-safe-assembly
                    assembly {
                        w := sub(w, sgt(w, 2))
                    }
                    return w;
                }
            }
            do { // Otherwise, use Halley's for faster convergence.
                int256 e = expWad(w);
                /// @solidity memory-safe-assembly
                assembly {
                    let t := add(w, wad)
                    let s := sub(mul(w, e), mul(x, wad))
                    w := sub(w, sdiv(mul(s, wad), sub(mul(e, t), sdiv(mul(add(t, wad), s), add(t, t)))))
                }
                if (p <= w) break;
                p = w;
            } while (--i != c);
            /// @solidity memory-safe-assembly
            assembly {
                w := sub(w, sgt(w, 2))
            }
            // For certain ranges of `x`, we'll use the quadratic-rate recursive formula of
            // R. Iacono and J.P. Boyd for the last iteration, to avoid catastrophic cancellation.
            if (c == uint256(0)) return w;
            int256 t = w | 1;
            /// @solidity memory-safe-assembly
            assembly {
                x := sdiv(mul(x, wad), t)
            }
            x = (t * (wad + lnWad(x)));
            /// @solidity memory-safe-assembly
            assembly {
                w := sdiv(x, add(wad, t))
            }
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                  GENERAL NUMBER UTILITIES                  */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns `a * b == x * y`, with full precision.
    function fullMulEq(uint256 a, uint256 b, uint256 x, uint256 y)
        internal
        pure
        returns (bool result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            result := and(eq(mul(a, b), mul(x, y)), eq(mulmod(x, y, not(0)), mulmod(a, b, not(0))))
        }
    }

    /// @dev Calculates `floor(x * y / d)` with full precision.
    /// Throws if result overflows a uint256 or when `d` is zero.
    /// Credit to Remco Bloemen under MIT license: https://2π.com/21/muldiv
    function fullMulDiv(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // 512-bit multiply `[p1 p0] = x * y`.
            // Compute the product mod `2**256` and mod `2**256 - 1`
            // then use the Chinese Remainder Theorem to reconstruct
            // the 512 bit result. The result is stored in two 256
            // variables such that `product = p1 * 2**256 + p0`.

            // Temporarily use `z` as `p0` to save gas.
            z := mul(x, y) // Lower 256 bits of `x * y`.
            for {} 1 {} {
                // If overflows.
                if iszero(mul(or(iszero(x), eq(div(z, x), y)), d)) {
                    let mm := mulmod(x, y, not(0))
                    let p1 := sub(mm, add(z, lt(mm, z))) // Upper 256 bits of `x * y`.

                    /*------------------- 512 by 256 division --------------------*/

                    // Make division exact by subtracting the remainder from `[p1 p0]`.
                    let r := mulmod(x, y, d) // Compute remainder using mulmod.
                    let t := and(d, sub(0, d)) // The least significant bit of `d`. `t >= 1`.
                    // Make sure `z` is less than `2**256`. Also prevents `d == 0`.
                    // Placing the check here seems to give more optimal stack operations.
                    if iszero(gt(d, p1)) {
                        mstore(0x00, 0xae47f702) // `FullMulDivFailed()`.
                        revert(0x1c, 0x04)
                    }
                    d := div(d, t) // Divide `d` by `t`, which is a power of two.
                    // Invert `d mod 2**256`
                    // Now that `d` is an odd number, it has an inverse
                    // modulo `2**256` such that `d * inv = 1 mod 2**256`.
                    // Compute the inverse by starting with a seed that is correct
                    // correct for four bits. That is, `d * inv = 1 mod 2**4`.
                    let inv := xor(2, mul(3, d))
                    // Now use Newton-Raphson iteration to improve the precision.
                    // Thanks to Hensel's lifting lemma, this also works in modular
                    // arithmetic, doubling the correct bits in each step.
                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**8
                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**16
                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**32
                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**64
                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**128
                    z :=
                        mul(
                            // Divide [p1 p0] by the factors of two.
                            // Shift in bits from `p1` into `p0`. For this we need
                            // to flip `t` such that it is `2**256 / t`.
                            or(mul(sub(p1, gt(r, z)), add(div(sub(0, t), t), 1)), div(sub(z, r), t)),
                            mul(sub(2, mul(d, inv)), inv) // inverse mod 2**256
                        )
                    break
                }
                z := div(z, d)
                break
            }
        }
    }

    /// @dev Calculates `floor(x * y / d)` with full precision.
    /// Behavior is undefined if `d` is zero or the final result cannot fit in 256 bits.
    /// Performs the full 512 bit calculation regardless.
    function fullMulDivUnchecked(uint256 x, uint256 y, uint256 d)
        internal
        pure
        returns (uint256 z)
    {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, y)
            let mm := mulmod(x, y, not(0))
            let p1 := sub(mm, add(z, lt(mm, z)))
            let t := and(d, sub(0, d))
            let r := mulmod(x, y, d)
            d := div(d, t)
            let inv := xor(2, mul(3, d))
            inv := mul(inv, sub(2, mul(d, inv)))
            inv := mul(inv, sub(2, mul(d, inv)))
            inv := mul(inv, sub(2, mul(d, inv)))
            inv := mul(inv, sub(2, mul(d, inv)))
            inv := mul(inv, sub(2, mul(d, inv)))
            z :=
                mul(
                    or(mul(sub(p1, gt(r, z)), add(div(sub(0, t), t), 1)), div(sub(z, r), t)),
                    mul(sub(2, mul(d, inv)), inv)
                )
        }
    }

    /// @dev Calculates `floor(x * y / d)` with full precision, rounded up.
    /// Throws if result overflows a uint256 or when `d` is zero.
    /// Credit to Uniswap-v3-core under MIT license:
    /// https://github.com/Uniswap/v3-core/blob/main/contracts/libraries/FullMath.sol
    function fullMulDivUp(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        z = fullMulDiv(x, y, d);
        /// @solidity memory-safe-assembly
        assembly {
            if mulmod(x, y, d) {
                z := add(z, 1)
                if iszero(z) {
                    mstore(0x00, 0xae47f702) // `FullMulDivFailed()`.
                    revert(0x1c, 0x04)
                }
            }
        }
    }

    /// @dev Calculates `floor(x * y / 2 ** n)` with full precision.
    /// Throws if result overflows a uint256.
    /// Credit to Philogy under MIT license:
    /// https://github.com/SorellaLabs/angstrom/blob/main/contracts/src/libraries/X128MathLib.sol
    function fullMulDivN(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Temporarily use `z` as `p0` to save gas.
            z := mul(x, y) // Lower 256 bits of `x * y`. We'll call this `z`.
            for {} 1 {} {
                if iszero(or(iszero(x), eq(div(z, x), y))) {
                    let k := and(n, 0xff) // `n`, cleaned.
                    let mm := mulmod(x, y, not(0))
                    let p1 := sub(mm, add(z, lt(mm, z))) // Upper 256 bits of `x * y`.
                    //         |      p1     |      z     |
                    // Before: | p1_0 ¦ p1_1 | z_0  ¦ z_1 |
                    // Final:  |   0  ¦ p1_0 | p1_1 ¦ z_0 |
                    // Check that final `z` doesn't overflow by checking that p1_0 = 0.
                    if iszero(shr(k, p1)) {
                        z := add(shl(sub(256, k), p1), shr(k, z))
                        break
                    }
                    mstore(0x00, 0xae47f702) // `FullMulDivFailed()`.
                    revert(0x1c, 0x04)
                }
                z := shr(and(n, 0xff), z)
                break
            }
        }
    }

    /// @dev Returns `floor(x * y / d)`.
    /// Reverts if `x * y` overflows, or `d` is zero.
    function mulDiv(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, y)
            // Equivalent to `require(d != 0 && (y == 0 || x <= type(uint256).max / y))`.
            if iszero(mul(or(iszero(x), eq(div(z, x), y)), d)) {
                mstore(0x00, 0xad251c27) // `MulDivFailed()`.
                revert(0x1c, 0x04)
            }
            z := div(z, d)
        }
    }

    /// @dev Returns `ceil(x * y / d)`.
    /// Reverts if `x * y` overflows, or `d` is zero.
    function mulDivUp(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, y)
            // Equivalent to `require(d != 0 && (y == 0 || x <= type(uint256).max / y))`.
            if iszero(mul(or(iszero(x), eq(div(z, x), y)), d)) {
                mstore(0x00, 0xad251c27) // `MulDivFailed()`.
                revert(0x1c, 0x04)
            }
            z := add(iszero(iszero(mod(z, d))), div(z, d))
        }
    }

    /// @dev Returns `x`, the modular multiplicative inverse of `a`, such that `(a * x) % n == 1`.
    function invMod(uint256 a, uint256 n) internal pure returns (uint256 x) {
        /// @solidity memory-safe-assembly
        assembly {
            let g := n
            let r := mod(a, n)
            for { let y := 1 } 1 {} {
                let q := div(g, r)
                let t := g
                g := r
                r := sub(t, mul(r, q))
                let u := x
                x := y
                y := sub(u, mul(y, q))
                if iszero(r) { break }
            }
            x := mul(eq(g, 1), add(x, mul(slt(x, 0), n)))
        }
    }

    /// @dev Returns `ceil(x / d)`.
    /// Reverts if `d` is zero.
    function divUp(uint256 x, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            if iszero(d) {
                mstore(0x00, 0x65244e4e) // `DivFailed()`.
                revert(0x1c, 0x04)
            }
            z := add(iszero(iszero(mod(x, d))), div(x, d))
        }
    }

    /// @dev Returns `max(0, x - y)`.
    function zeroFloorSub(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(gt(x, y), sub(x, y))
        }
    }

    /// @dev Returns `condition ? x : y`, without branching.
    function ternary(bool condition, uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), iszero(condition)))
        }
    }

    /// @dev Returns `condition ? x : y`, without branching.
    function ternary(bool condition, bytes32 x, bytes32 y) internal pure returns (bytes32 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), iszero(condition)))
        }
    }

    /// @dev Returns `condition ? x : y`, without branching.
    function ternary(bool condition, address x, address y) internal pure returns (address z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), iszero(condition)))
        }
    }

    /// @dev Exponentiate `x` to `y` by squaring, denominated in base `b`.
    /// Reverts if the computation overflows.
    function rpow(uint256 x, uint256 y, uint256 b) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(b, iszero(y)) // `0 ** 0 = 1`. Otherwise, `0 ** n = 0`.
            if x {
                z := xor(b, mul(xor(b, x), and(y, 1))) // `z = isEven(y) ? scale : x`
                let half := shr(1, b) // Divide `b` by 2.
                // Divide `y` by 2 every iteration.
                for { y := shr(1, y) } y { y := shr(1, y) } {
                    let xx := mul(x, x) // Store x squared.
                    let xxRound := add(xx, half) // Round to the nearest number.
                    // Revert if `xx + half` overflowed, or if `x ** 2` overflows.
                    if or(lt(xxRound, xx), shr(128, x)) {
                        mstore(0x00, 0x49f7642b) // `RPowOverflow()`.
                        revert(0x1c, 0x04)
                    }
                    x := div(xxRound, b) // Set `x` to scaled `xxRound`.
                    // If `y` is odd:
                    if and(y, 1) {
                        let zx := mul(z, x) // Compute `z * x`.
                        let zxRound := add(zx, half) // Round to the nearest number.
                        // If `z * x` overflowed or `zx + half` overflowed:
                        if or(xor(div(zx, x), z), lt(zxRound, zx)) {
                            // Revert if `x` is non-zero.
                            if x {
                                mstore(0x00, 0x49f7642b) // `RPowOverflow()`.
                                revert(0x1c, 0x04)
                            }
                        }
                        z := div(zxRound, b) // Return properly scaled `zxRound`.
                    }
                }
            }
        }
    }

    /// @dev Returns the square root of `x`, rounded down.
    function sqrt(uint256 x) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // `floor(sqrt(2**15)) = 181`. `sqrt(2**15) - 181 = 2.84`.
            z := 181 // The "correct" value is 1, but this saves a multiplication later.

            // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
            // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.

            // Let `y = x / 2**r`. We check `y >= 2**(k + 8)`
            // but shift right by `k` bits to ensure that if `x >= 256`, then `y >= 256`.
            let r := shl(7, lt(0xffffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffffff, shr(r, x))))
            z := shl(shr(1, r), z)

            // Goal was to get `z*z*y` within a small factor of `x`. More iterations could
            // get y in a tighter range. Currently, we will have y in `[256, 256*(2**16))`.
            // We ensured `y >= 256` so that the relative difference between `y` and `y+1` is small.
            // That's not possible if `x < 256` but we can just verify those cases exhaustively.

            // Now, `z*z*y <= x < z*z*(y+1)`, and `y <= 2**(16+8)`, and either `y >= 256`, or `x < 256`.
            // Correctness can be checked exhaustively for `x < 256`, so we assume `y >= 256`.
            // Then `z*sqrt(y)` is within `sqrt(257)/sqrt(256)` of `sqrt(x)`, or about 20bps.

            // For `s` in the range `[1/256, 256]`, the estimate `f(s) = (181/1024) * (s+1)`
            // is in the range `(1/2.84 * sqrt(s), 2.84 * sqrt(s))`,
            // with largest error when `s = 1` and when `s = 256` or `1/256`.

            // Since `y` is in `[256, 256*(2**16))`, let `a = y/65536`, so that `a` is in `[1/256, 256)`.
            // Then we can estimate `sqrt(y)` using
            // `sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2**18`.

            // There is no overflow risk here since `y < 2**136` after the first branch above.
            z := shr(18, mul(z, add(shr(r, x), 65536))) // A `mul()` is saved from starting `z` at 181.

            // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))

            // If `x+1` is a perfect square, the Babylonian method cycles between
            // `floor(sqrt(x))` and `ceil(sqrt(x))`. This statement ensures we return floor.
            // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
            z := sub(z, lt(div(x, z), z))
        }
    }

    /// @dev Returns the cube root of `x`, rounded down.
    /// Credit to bout3fiddy and pcaversaccio under AGPLv3 license:
    /// https://github.com/pcaversaccio/snekmate/blob/main/src/utils/Math.vy
    /// Formally verified by xuwinnie:
    /// https://github.com/vectorized/solady/blob/main/audits/xuwinnie-solady-cbrt-proof.pdf
    function cbrt(uint256 x) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            let r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(r, shl(3, lt(0xff, shr(r, x))))
            // Makeshift lookup table to nudge the approximate log2 result.
            z := div(shl(div(r, 3), shl(lt(0xf, shr(r, x)), 0xf)), xor(7, mod(r, 3)))
            // Newton-Raphson's.
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            // Round down.
            z := sub(z, lt(div(x, mul(z, z)), z))
        }
    }

    /// @dev Returns the square root of `x`, denominated in `WAD`, rounded down.
    function sqrtWad(uint256 x) internal pure returns (uint256 z) {
        unchecked {
            if (x <= type(uint256).max / 10 ** 18) return sqrt(x * 10 ** 18);
            z = (1 + sqrt(x)) * 10 ** 9;
            z = (fullMulDivUnchecked(x, 10 ** 18, z) + z) >> 1;
        }
        /// @solidity memory-safe-assembly
        assembly {
            z := sub(z, gt(999999999999999999, sub(mulmod(z, z, x), 1))) // Round down.
        }
    }

    /// @dev Returns the cube root of `x`, denominated in `WAD`, rounded down.
    /// Formally verified by xuwinnie:
    /// https://github.com/vectorized/solady/blob/main/audits/xuwinnie-solady-cbrt-proof.pdf
    function cbrtWad(uint256 x) internal pure returns (uint256 z) {
        unchecked {
            if (x <= type(uint256).max / 10 ** 36) return cbrt(x * 10 ** 36);
            z = (1 + cbrt(x)) * 10 ** 12;
            z = (fullMulDivUnchecked(x, 10 ** 36, z * z) + z + z) / 3;
        }
        /// @solidity memory-safe-assembly
        assembly {
            let p := x
            for {} 1 {} {
                if iszero(shr(229, p)) {
                    if iszero(shr(199, p)) {
                        p := mul(p, 100000000000000000) // 10 ** 17.
                        break
                    }
                    p := mul(p, 100000000) // 10 ** 8.
                    break
                }
                if iszero(shr(249, p)) { p := mul(p, 100) }
                break
            }
            let t := mulmod(mul(z, z), z, p)
            z := sub(z, gt(lt(t, shr(1, p)), iszero(t))) // Round down.
        }
    }

    /// @dev Returns the factorial of `x`.
    function factorial(uint256 x) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := 1
            if iszero(lt(x, 58)) {
                mstore(0x00, 0xaba0f2a2) // `FactorialOverflow()`.
                revert(0x1c, 0x04)
            }
            for {} x { x := sub(x, 1) } { z := mul(z, x) }
        }
    }

    /// @dev Returns the log2 of `x`.
    /// Equivalent to computing the index of the most significant bit (MSB) of `x`.
    /// Returns 0 if `x` is zero.
    function log2(uint256 x) internal pure returns (uint256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(r, shl(3, lt(0xff, shr(r, x))))
            // forgefmt: disable-next-item
            r := or(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)),
                0x0706060506020504060203020504030106050205030304010505030400000000))
        }
    }

    /// @dev Returns the log2 of `x`, rounded up.
    /// Returns 0 if `x` is zero.
    function log2Up(uint256 x) internal pure returns (uint256 r) {
        r = log2(x);
        /// @solidity memory-safe-assembly
        assembly {
            r := add(r, lt(shl(r, 1), x))
        }
    }

    /// @dev Returns the log10 of `x`.
    /// Returns 0 if `x` is zero.
    function log10(uint256 x) internal pure returns (uint256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            if iszero(lt(x, 100000000000000000000000000000000000000)) {
                x := div(x, 100000000000000000000000000000000000000)
                r := 38
            }
            if iszero(lt(x, 100000000000000000000)) {
                x := div(x, 100000000000000000000)
                r := add(r, 20)
            }
            if iszero(lt(x, 10000000000)) {
                x := div(x, 10000000000)
                r := add(r, 10)
            }
            if iszero(lt(x, 100000)) {
                x := div(x, 100000)
                r := add(r, 5)
            }
            r := add(r, add(gt(x, 9), add(gt(x, 99), add(gt(x, 999), gt(x, 9999)))))
        }
    }

    /// @dev Returns the log10 of `x`, rounded up.
    /// Returns 0 if `x` is zero.
    function log10Up(uint256 x) internal pure returns (uint256 r) {
        r = log10(x);
        /// @solidity memory-safe-assembly
        assembly {
            r := add(r, lt(exp(10, r), x))
        }
    }

    /// @dev Returns the log256 of `x`.
    /// Returns 0 if `x` is zero.
    function log256(uint256 x) internal pure returns (uint256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(shr(3, r), lt(0xff, shr(r, x)))
        }
    }

    /// @dev Returns the log256 of `x`, rounded up.
    /// Returns 0 if `x` is zero.
    function log256Up(uint256 x) internal pure returns (uint256 r) {
        r = log256(x);
        /// @solidity memory-safe-assembly
        assembly {
            r := add(r, lt(shl(shl(3, r), 1), x))
        }
    }

    /// @dev Returns the scientific notation format `mantissa * 10 ** exponent` of `x`.
    /// Useful for compressing prices (e.g. using 25 bit mantissa and 7 bit exponent).
    function sci(uint256 x) internal pure returns (uint256 mantissa, uint256 exponent) {
        /// @solidity memory-safe-assembly
        assembly {
            mantissa := x
            if mantissa {
                if iszero(mod(mantissa, 1000000000000000000000000000000000)) {
                    mantissa := div(mantissa, 1000000000000000000000000000000000)
                    exponent := 33
                }
                if iszero(mod(mantissa, 10000000000000000000)) {
                    mantissa := div(mantissa, 10000000000000000000)
                    exponent := add(exponent, 19)
                }
                if iszero(mod(mantissa, 1000000000000)) {
                    mantissa := div(mantissa, 1000000000000)
                    exponent := add(exponent, 12)
                }
                if iszero(mod(mantissa, 1000000)) {
                    mantissa := div(mantissa, 1000000)
                    exponent := add(exponent, 6)
                }
                if iszero(mod(mantissa, 10000)) {
                    mantissa := div(mantissa, 10000)
                    exponent := add(exponent, 4)
                }
                if iszero(mod(mantissa, 100)) {
                    mantissa := div(mantissa, 100)
                    exponent := add(exponent, 2)
                }
                if iszero(mod(mantissa, 10)) {
                    mantissa := div(mantissa, 10)
                    exponent := add(exponent, 1)
                }
            }
        }
    }

    /// @dev Convenience function for packing `x` into a smaller number using `sci`.
    /// The `mantissa` will be in bits [7..255] (the upper 249 bits).
    /// The `exponent` will be in bits [0..6] (the lower 7 bits).
    /// Use `SafeCastLib` to safely ensure that the `packed` number is small
    /// enough to fit in the desired unsigned integer type:
    /// ```
    ///     uint32 packed = SafeCastLib.toUint32(FixedPointMathLib.packSci(777 ether));
    /// ```
    function packSci(uint256 x) internal pure returns (uint256 packed) {
        (x, packed) = sci(x); // Reuse for `mantissa` and `exponent`.
        /// @solidity memory-safe-assembly
        assembly {
            if shr(249, x) {
                mstore(0x00, 0xce30380c) // `MantissaOverflow()`.
                revert(0x1c, 0x04)
            }
            packed := or(shl(7, x), packed)
        }
    }

    /// @dev Convenience function for unpacking a packed number from `packSci`.
    function unpackSci(uint256 packed) internal pure returns (uint256 unpacked) {
        unchecked {
            unpacked = (packed >> 7) * 10 ** (packed & 0x7f);
        }
    }

    /// @dev Returns the average of `x` and `y`. Rounds towards zero.
    function avg(uint256 x, uint256 y) internal pure returns (uint256 z) {
        unchecked {
            z = (x & y) + ((x ^ y) >> 1);
        }
    }

    /// @dev Returns the average of `x` and `y`. Rounds towards negative infinity.
    function avg(int256 x, int256 y) internal pure returns (int256 z) {
        unchecked {
            z = (x >> 1) + (y >> 1) + (x & y & 1);
        }
    }

    /// @dev Returns the absolute value of `x`.
    function abs(int256 x) internal pure returns (uint256 z) {
        unchecked {
            z = (uint256(x) + uint256(x >> 255)) ^ uint256(x >> 255);
        }
    }

    /// @dev Returns the absolute distance between `x` and `y`.
    function dist(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := add(xor(sub(0, gt(x, y)), sub(y, x)), gt(x, y))
        }
    }

    /// @dev Returns the absolute distance between `x` and `y`.
    function dist(int256 x, int256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := add(xor(sub(0, sgt(x, y)), sub(y, x)), sgt(x, y))
        }
    }

    /// @dev Returns the minimum of `x` and `y`.
    function min(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), lt(y, x)))
        }
    }

    /// @dev Returns the minimum of `x` and `y`.
    function min(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), slt(y, x)))
        }
    }

    /// @dev Returns the maximum of `x` and `y`.
    function max(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), gt(y, x)))
        }
    }

    /// @dev Returns the maximum of `x` and `y`.
    function max(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), sgt(y, x)))
        }
    }

    /// @dev Returns `x`, bounded to `minValue` and `maxValue`.
    function clamp(uint256 x, uint256 minValue, uint256 maxValue)
        internal
        pure
        returns (uint256 z)
    {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, minValue), gt(minValue, x)))
            z := xor(z, mul(xor(z, maxValue), lt(maxValue, z)))
        }
    }

    /// @dev Returns `x`, bounded to `minValue` and `maxValue`.
    function clamp(int256 x, int256 minValue, int256 maxValue) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, minValue), sgt(minValue, x)))
            z := xor(z, mul(xor(z, maxValue), slt(maxValue, z)))
        }
    }

    /// @dev Returns greatest common divisor of `x` and `y`.
    function gcd(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            for { z := x } y {} {
                let t := y
                y := mod(z, y)
                z := t
            }
        }
    }

    /// @dev Returns `a + (b - a) * (t - begin) / (end - begin)`,
    /// with `t` clamped between `begin` and `end` (inclusive).
    /// Agnostic to the order of (`a`, `b`) and (`end`, `begin`).
    /// If `begins == end`, returns `t <= begin ? a : b`.
    function lerp(uint256 a, uint256 b, uint256 t, uint256 begin, uint256 end)
        internal
        pure
        returns (uint256)
    {
        if (begin > end) (t, begin, end) = (~t, ~begin, ~end);
        if (t <= begin) return a;
        if (t >= end) return b;
        unchecked {
            if (b >= a) return a + fullMulDiv(b - a, t - begin, end - begin);
            return a - fullMulDiv(a - b, t - begin, end - begin);
        }
    }

    /// @dev Returns `a + (b - a) * (t - begin) / (end - begin)`.
    /// with `t` clamped between `begin` and `end` (inclusive).
    /// Agnostic to the order of (`a`, `b`) and (`end`, `begin`).
    /// If `begins == end`, returns `t <= begin ? a : b`.
    function lerp(int256 a, int256 b, int256 t, int256 begin, int256 end)
        internal
        pure
        returns (int256)
    {
        if (begin > end) (t, begin, end) = (~t, ~begin, ~end);
        if (t <= begin) return a;
        if (t >= end) return b;
        // forgefmt: disable-next-item
        unchecked {
            if (b >= a) return int256(uint256(a) + fullMulDiv(uint256(b - a),
                uint256(t - begin), uint256(end - begin)));
            return int256(uint256(a) - fullMulDiv(uint256(a - b),
                uint256(t - begin), uint256(end - begin)));
        }
    }

    /// @dev Returns if `x` is an even number. Some people may need this.
    function isEven(uint256 x) internal pure returns (bool) {
        return x & uint256(1) == uint256(0);
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                   RAW NUMBER OPERATIONS                    */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns `x + y`, without checking for overflow.
    function rawAdd(uint256 x, uint256 y) internal pure returns (uint256 z) {
        unchecked {
            z = x + y;
        }
    }

    /// @dev Returns `x + y`, without checking for overflow.
    function rawAdd(int256 x, int256 y) internal pure returns (int256 z) {
        unchecked {
            z = x + y;
        }
    }

    /// @dev Returns `x - y`, without checking for underflow.
    function rawSub(uint256 x, uint256 y) internal pure returns (uint256 z) {
        unchecked {
            z = x - y;
        }
    }

    /// @dev Returns `x - y`, without checking for underflow.
    function rawSub(int256 x, int256 y) internal pure returns (int256 z) {
        unchecked {
            z = x - y;
        }
    }

    /// @dev Returns `x * y`, without checking for overflow.
    function rawMul(uint256 x, uint256 y) internal pure returns (uint256 z) {
        unchecked {
            z = x * y;
        }
    }

    /// @dev Returns `x * y`, without checking for overflow.
    function rawMul(int256 x, int256 y) internal pure returns (int256 z) {
        unchecked {
            z = x * y;
        }
    }

    /// @dev Returns `x / y`, returning 0 if `y` is zero.
    function rawDiv(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := div(x, y)
        }
    }

    /// @dev Returns `x / y`, returning 0 if `y` is zero.
    function rawSDiv(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := sdiv(x, y)
        }
    }

    /// @dev Returns `x % y`, returning 0 if `y` is zero.
    function rawMod(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mod(x, y)
        }
    }

    /// @dev Returns `x % y`, returning 0 if `y` is zero.
    function rawSMod(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := smod(x, y)
        }
    }

    /// @dev Returns `(x + y) % d`, return 0 if `d` if zero.
    function rawAddMod(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := addmod(x, y, d)
        }
    }

    /// @dev Returns `(x * y) % d`, return 0 if `d` if zero.
    function rawMulMod(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mulmod(x, y, d)
        }
    }
}

File 4 of 12 : SafeTransferLib.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Safe ETH and ERC20 transfer library that gracefully handles missing return values.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/SafeTransferLib.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/SafeTransferLib.sol)
/// @author Permit2 operations from (https://github.com/Uniswap/permit2/blob/main/src/libraries/Permit2Lib.sol)
///
/// @dev Note:
/// - For ETH transfers, please use `forceSafeTransferETH` for DoS protection.
library SafeTransferLib {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       CUSTOM ERRORS                        */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The ETH transfer has failed.
    error ETHTransferFailed();

    /// @dev The ERC20 `transferFrom` has failed.
    error TransferFromFailed();

    /// @dev The ERC20 `transfer` has failed.
    error TransferFailed();

    /// @dev The ERC20 `approve` has failed.
    error ApproveFailed();

    /// @dev The ERC20 `totalSupply` query has failed.
    error TotalSupplyQueryFailed();

    /// @dev The Permit2 operation has failed.
    error Permit2Failed();

    /// @dev The Permit2 amount must be less than `2**160 - 1`.
    error Permit2AmountOverflow();

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                         CONSTANTS                          */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Suggested gas stipend for contract receiving ETH that disallows any storage writes.
    uint256 internal constant GAS_STIPEND_NO_STORAGE_WRITES = 2300;

    /// @dev Suggested gas stipend for contract receiving ETH to perform a few
    /// storage reads and writes, but low enough to prevent griefing.
    uint256 internal constant GAS_STIPEND_NO_GRIEF = 100000;

    /// @dev The unique EIP-712 domain domain separator for the DAI token contract.
    bytes32 internal constant DAI_DOMAIN_SEPARATOR =
        0xdbb8cf42e1ecb028be3f3dbc922e1d878b963f411dc388ced501601c60f7c6f7;

    /// @dev The address for the WETH9 contract on Ethereum mainnet.
    address internal constant WETH9 = 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2;

    /// @dev The canonical Permit2 address.
    /// [Github](https://github.com/Uniswap/permit2)
    /// [Etherscan](https://etherscan.io/address/0x000000000022D473030F116dDEE9F6B43aC78BA3)
    address internal constant PERMIT2 = 0x000000000022D473030F116dDEE9F6B43aC78BA3;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       ETH OPERATIONS                       */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    // If the ETH transfer MUST succeed with a reasonable gas budget, use the force variants.
    //
    // The regular variants:
    // - Forwards all remaining gas to the target.
    // - Reverts if the target reverts.
    // - Reverts if the current contract has insufficient balance.
    //
    // The force variants:
    // - Forwards with an optional gas stipend
    //   (defaults to `GAS_STIPEND_NO_GRIEF`, which is sufficient for most cases).
    // - If the target reverts, or if the gas stipend is exhausted,
    //   creates a temporary contract to force send the ETH via `SELFDESTRUCT`.
    //   Future compatible with `SENDALL`: https://eips.ethereum.org/EIPS/eip-4758.
    // - Reverts if the current contract has insufficient balance.
    //
    // The try variants:
    // - Forwards with a mandatory gas stipend.
    // - Instead of reverting, returns whether the transfer succeeded.

    /// @dev Sends `amount` (in wei) ETH to `to`.
    function safeTransferETH(address to, uint256 amount) internal {
        /// @solidity memory-safe-assembly
        assembly {
            if iszero(call(gas(), to, amount, codesize(), 0x00, codesize(), 0x00)) {
                mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`.
                revert(0x1c, 0x04)
            }
        }
    }

    /// @dev Sends all the ETH in the current contract to `to`.
    function safeTransferAllETH(address to) internal {
        /// @solidity memory-safe-assembly
        assembly {
            // Transfer all the ETH and check if it succeeded or not.
            if iszero(call(gas(), to, selfbalance(), codesize(), 0x00, codesize(), 0x00)) {
                mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`.
                revert(0x1c, 0x04)
            }
        }
    }

    /// @dev Force sends `amount` (in wei) ETH to `to`, with a `gasStipend`.
    function forceSafeTransferETH(address to, uint256 amount, uint256 gasStipend) internal {
        /// @solidity memory-safe-assembly
        assembly {
            if lt(selfbalance(), amount) {
                mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`.
                revert(0x1c, 0x04)
            }
            if iszero(call(gasStipend, to, amount, codesize(), 0x00, codesize(), 0x00)) {
                mstore(0x00, to) // Store the address in scratch space.
                mstore8(0x0b, 0x73) // Opcode `PUSH20`.
                mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`.
                if iszero(create(amount, 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation.
            }
        }
    }

    /// @dev Force sends all the ETH in the current contract to `to`, with a `gasStipend`.
    function forceSafeTransferAllETH(address to, uint256 gasStipend) internal {
        /// @solidity memory-safe-assembly
        assembly {
            if iszero(call(gasStipend, to, selfbalance(), codesize(), 0x00, codesize(), 0x00)) {
                mstore(0x00, to) // Store the address in scratch space.
                mstore8(0x0b, 0x73) // Opcode `PUSH20`.
                mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`.
                if iszero(create(selfbalance(), 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation.
            }
        }
    }

    /// @dev Force sends `amount` (in wei) ETH to `to`, with `GAS_STIPEND_NO_GRIEF`.
    function forceSafeTransferETH(address to, uint256 amount) internal {
        /// @solidity memory-safe-assembly
        assembly {
            if lt(selfbalance(), amount) {
                mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`.
                revert(0x1c, 0x04)
            }
            if iszero(call(GAS_STIPEND_NO_GRIEF, to, amount, codesize(), 0x00, codesize(), 0x00)) {
                mstore(0x00, to) // Store the address in scratch space.
                mstore8(0x0b, 0x73) // Opcode `PUSH20`.
                mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`.
                if iszero(create(amount, 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation.
            }
        }
    }

    /// @dev Force sends all the ETH in the current contract to `to`, with `GAS_STIPEND_NO_GRIEF`.
    function forceSafeTransferAllETH(address to) internal {
        /// @solidity memory-safe-assembly
        assembly {
            // forgefmt: disable-next-item
            if iszero(call(GAS_STIPEND_NO_GRIEF, to, selfbalance(), codesize(), 0x00, codesize(), 0x00)) {
                mstore(0x00, to) // Store the address in scratch space.
                mstore8(0x0b, 0x73) // Opcode `PUSH20`.
                mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`.
                if iszero(create(selfbalance(), 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation.
            }
        }
    }

    /// @dev Sends `amount` (in wei) ETH to `to`, with a `gasStipend`.
    function trySafeTransferETH(address to, uint256 amount, uint256 gasStipend)
        internal
        returns (bool success)
    {
        /// @solidity memory-safe-assembly
        assembly {
            success := call(gasStipend, to, amount, codesize(), 0x00, codesize(), 0x00)
        }
    }

    /// @dev Sends all the ETH in the current contract to `to`, with a `gasStipend`.
    function trySafeTransferAllETH(address to, uint256 gasStipend)
        internal
        returns (bool success)
    {
        /// @solidity memory-safe-assembly
        assembly {
            success := call(gasStipend, to, selfbalance(), codesize(), 0x00, codesize(), 0x00)
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                      ERC20 OPERATIONS                      */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Sends `amount` of ERC20 `token` from `from` to `to`.
    /// Reverts upon failure.
    ///
    /// The `from` account must have at least `amount` approved for
    /// the current contract to manage.
    function safeTransferFrom(address token, address from, address to, uint256 amount) internal {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40) // Cache the free memory pointer.
            mstore(0x60, amount) // Store the `amount` argument.
            mstore(0x40, to) // Store the `to` argument.
            mstore(0x2c, shl(96, from)) // Store the `from` argument.
            mstore(0x0c, 0x23b872dd000000000000000000000000) // `transferFrom(address,address,uint256)`.
            let success := call(gas(), token, 0, 0x1c, 0x64, 0x00, 0x20)
            if iszero(and(eq(mload(0x00), 1), success)) {
                if iszero(lt(or(iszero(extcodesize(token)), returndatasize()), success)) {
                    mstore(0x00, 0x7939f424) // `TransferFromFailed()`.
                    revert(0x1c, 0x04)
                }
            }
            mstore(0x60, 0) // Restore the zero slot to zero.
            mstore(0x40, m) // Restore the free memory pointer.
        }
    }

    /// @dev Sends `amount` of ERC20 `token` from `from` to `to`.
    ///
    /// The `from` account must have at least `amount` approved for the current contract to manage.
    function trySafeTransferFrom(address token, address from, address to, uint256 amount)
        internal
        returns (bool success)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40) // Cache the free memory pointer.
            mstore(0x60, amount) // Store the `amount` argument.
            mstore(0x40, to) // Store the `to` argument.
            mstore(0x2c, shl(96, from)) // Store the `from` argument.
            mstore(0x0c, 0x23b872dd000000000000000000000000) // `transferFrom(address,address,uint256)`.
            success := call(gas(), token, 0, 0x1c, 0x64, 0x00, 0x20)
            if iszero(and(eq(mload(0x00), 1), success)) {
                success := lt(or(iszero(extcodesize(token)), returndatasize()), success)
            }
            mstore(0x60, 0) // Restore the zero slot to zero.
            mstore(0x40, m) // Restore the free memory pointer.
        }
    }

    /// @dev Sends all of ERC20 `token` from `from` to `to`.
    /// Reverts upon failure.
    ///
    /// The `from` account must have their entire balance approved for the current contract to manage.
    function safeTransferAllFrom(address token, address from, address to)
        internal
        returns (uint256 amount)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40) // Cache the free memory pointer.
            mstore(0x40, to) // Store the `to` argument.
            mstore(0x2c, shl(96, from)) // Store the `from` argument.
            mstore(0x0c, 0x70a08231000000000000000000000000) // `balanceOf(address)`.
            // Read the balance, reverting upon failure.
            if iszero(
                and( // The arguments of `and` are evaluated from right to left.
                    gt(returndatasize(), 0x1f), // At least 32 bytes returned.
                    staticcall(gas(), token, 0x1c, 0x24, 0x60, 0x20)
                )
            ) {
                mstore(0x00, 0x7939f424) // `TransferFromFailed()`.
                revert(0x1c, 0x04)
            }
            mstore(0x00, 0x23b872dd) // `transferFrom(address,address,uint256)`.
            amount := mload(0x60) // The `amount` is already at 0x60. We'll need to return it.
            // Perform the transfer, reverting upon failure.
            let success := call(gas(), token, 0, 0x1c, 0x64, 0x00, 0x20)
            if iszero(and(eq(mload(0x00), 1), success)) {
                if iszero(lt(or(iszero(extcodesize(token)), returndatasize()), success)) {
                    mstore(0x00, 0x7939f424) // `TransferFromFailed()`.
                    revert(0x1c, 0x04)
                }
            }
            mstore(0x60, 0) // Restore the zero slot to zero.
            mstore(0x40, m) // Restore the free memory pointer.
        }
    }

    /// @dev Sends `amount` of ERC20 `token` from the current contract to `to`.
    /// Reverts upon failure.
    function safeTransfer(address token, address to, uint256 amount) internal {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x14, to) // Store the `to` argument.
            mstore(0x34, amount) // Store the `amount` argument.
            mstore(0x00, 0xa9059cbb000000000000000000000000) // `transfer(address,uint256)`.
            // Perform the transfer, reverting upon failure.
            let success := call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20)
            if iszero(and(eq(mload(0x00), 1), success)) {
                if iszero(lt(or(iszero(extcodesize(token)), returndatasize()), success)) {
                    mstore(0x00, 0x90b8ec18) // `TransferFailed()`.
                    revert(0x1c, 0x04)
                }
            }
            mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten.
        }
    }

    /// @dev Sends all of ERC20 `token` from the current contract to `to`.
    /// Reverts upon failure.
    function safeTransferAll(address token, address to) internal returns (uint256 amount) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, 0x70a08231) // Store the function selector of `balanceOf(address)`.
            mstore(0x20, address()) // Store the address of the current contract.
            // Read the balance, reverting upon failure.
            if iszero(
                and( // The arguments of `and` are evaluated from right to left.
                    gt(returndatasize(), 0x1f), // At least 32 bytes returned.
                    staticcall(gas(), token, 0x1c, 0x24, 0x34, 0x20)
                )
            ) {
                mstore(0x00, 0x90b8ec18) // `TransferFailed()`.
                revert(0x1c, 0x04)
            }
            mstore(0x14, to) // Store the `to` argument.
            amount := mload(0x34) // The `amount` is already at 0x34. We'll need to return it.
            mstore(0x00, 0xa9059cbb000000000000000000000000) // `transfer(address,uint256)`.
            // Perform the transfer, reverting upon failure.
            let success := call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20)
            if iszero(and(eq(mload(0x00), 1), success)) {
                if iszero(lt(or(iszero(extcodesize(token)), returndatasize()), success)) {
                    mstore(0x00, 0x90b8ec18) // `TransferFailed()`.
                    revert(0x1c, 0x04)
                }
            }
            mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten.
        }
    }

    /// @dev Sets `amount` of ERC20 `token` for `to` to manage on behalf of the current contract.
    /// Reverts upon failure.
    function safeApprove(address token, address to, uint256 amount) internal {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x14, to) // Store the `to` argument.
            mstore(0x34, amount) // Store the `amount` argument.
            mstore(0x00, 0x095ea7b3000000000000000000000000) // `approve(address,uint256)`.
            let success := call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20)
            if iszero(and(eq(mload(0x00), 1), success)) {
                if iszero(lt(or(iszero(extcodesize(token)), returndatasize()), success)) {
                    mstore(0x00, 0x3e3f8f73) // `ApproveFailed()`.
                    revert(0x1c, 0x04)
                }
            }
            mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten.
        }
    }

    /// @dev Sets `amount` of ERC20 `token` for `to` to manage on behalf of the current contract.
    /// If the initial attempt to approve fails, attempts to reset the approved amount to zero,
    /// then retries the approval again (some tokens, e.g. USDT, requires this).
    /// Reverts upon failure.
    function safeApproveWithRetry(address token, address to, uint256 amount) internal {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x14, to) // Store the `to` argument.
            mstore(0x34, amount) // Store the `amount` argument.
            mstore(0x00, 0x095ea7b3000000000000000000000000) // `approve(address,uint256)`.
            // Perform the approval, retrying upon failure.
            let success := call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20)
            if iszero(and(eq(mload(0x00), 1), success)) {
                if iszero(lt(or(iszero(extcodesize(token)), returndatasize()), success)) {
                    mstore(0x34, 0) // Store 0 for the `amount`.
                    mstore(0x00, 0x095ea7b3000000000000000000000000) // `approve(address,uint256)`.
                    pop(call(gas(), token, 0, 0x10, 0x44, codesize(), 0x00)) // Reset the approval.
                    mstore(0x34, amount) // Store back the original `amount`.
                    // Retry the approval, reverting upon failure.
                    success := call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20)
                    if iszero(and(eq(mload(0x00), 1), success)) {
                        // Check the `extcodesize` again just in case the token selfdestructs lol.
                        if iszero(lt(or(iszero(extcodesize(token)), returndatasize()), success)) {
                            mstore(0x00, 0x3e3f8f73) // `ApproveFailed()`.
                            revert(0x1c, 0x04)
                        }
                    }
                }
            }
            mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten.
        }
    }

    /// @dev Returns the amount of ERC20 `token` owned by `account`.
    /// Returns zero if the `token` does not exist.
    function balanceOf(address token, address account) internal view returns (uint256 amount) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x14, account) // Store the `account` argument.
            mstore(0x00, 0x70a08231000000000000000000000000) // `balanceOf(address)`.
            amount :=
                mul( // The arguments of `mul` are evaluated from right to left.
                    mload(0x20),
                    and( // The arguments of `and` are evaluated from right to left.
                        gt(returndatasize(), 0x1f), // At least 32 bytes returned.
                        staticcall(gas(), token, 0x10, 0x24, 0x20, 0x20)
                    )
                )
        }
    }

    /// @dev Returns the total supply of the `token`.
    /// Reverts if the token does not exist or does not implement `totalSupply()`.
    function totalSupply(address token) internal view returns (uint256 result) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, 0x18160ddd) // `totalSupply()`.
            if iszero(
                and(gt(returndatasize(), 0x1f), staticcall(gas(), token, 0x1c, 0x04, 0x00, 0x20))
            ) {
                mstore(0x00, 0x54cd9435) // `TotalSupplyQueryFailed()`.
                revert(0x1c, 0x04)
            }
            result := mload(0x00)
        }
    }

    /// @dev Sends `amount` of ERC20 `token` from `from` to `to`.
    /// If the initial attempt fails, try to use Permit2 to transfer the token.
    /// Reverts upon failure.
    ///
    /// The `from` account must have at least `amount` approved for the current contract to manage.
    function safeTransferFrom2(address token, address from, address to, uint256 amount) internal {
        if (!trySafeTransferFrom(token, from, to, amount)) {
            permit2TransferFrom(token, from, to, amount);
        }
    }

    /// @dev Sends `amount` of ERC20 `token` from `from` to `to` via Permit2.
    /// Reverts upon failure.
    function permit2TransferFrom(address token, address from, address to, uint256 amount)
        internal
    {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            mstore(add(m, 0x74), shr(96, shl(96, token)))
            mstore(add(m, 0x54), amount)
            mstore(add(m, 0x34), to)
            mstore(add(m, 0x20), shl(96, from))
            // `transferFrom(address,address,uint160,address)`.
            mstore(m, 0x36c78516000000000000000000000000)
            let p := PERMIT2
            let exists := eq(chainid(), 1)
            if iszero(exists) { exists := iszero(iszero(extcodesize(p))) }
            if iszero(
                and(
                    call(gas(), p, 0, add(m, 0x10), 0x84, codesize(), 0x00),
                    lt(iszero(extcodesize(token)), exists) // Token has code and Permit2 exists.
                )
            ) {
                mstore(0x00, 0x7939f4248757f0fd) // `TransferFromFailed()` or `Permit2AmountOverflow()`.
                revert(add(0x18, shl(2, iszero(iszero(shr(160, amount))))), 0x04)
            }
        }
    }

    /// @dev Permit a user to spend a given amount of
    /// another user's tokens via native EIP-2612 permit if possible, falling
    /// back to Permit2 if native permit fails or is not implemented on the token.
    function permit2(
        address token,
        address owner,
        address spender,
        uint256 amount,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal {
        bool success;
        /// @solidity memory-safe-assembly
        assembly {
            for {} shl(96, xor(token, WETH9)) {} {
                mstore(0x00, 0x3644e515) // `DOMAIN_SEPARATOR()`.
                if iszero(
                    and( // The arguments of `and` are evaluated from right to left.
                        lt(iszero(mload(0x00)), eq(returndatasize(), 0x20)), // Returns 1 non-zero word.
                        // Gas stipend to limit gas burn for tokens that don't refund gas when
                        // an non-existing function is called. 5K should be enough for a SLOAD.
                        staticcall(5000, token, 0x1c, 0x04, 0x00, 0x20)
                    )
                ) { break }
                // After here, we can be sure that token is a contract.
                let m := mload(0x40)
                mstore(add(m, 0x34), spender)
                mstore(add(m, 0x20), shl(96, owner))
                mstore(add(m, 0x74), deadline)
                if eq(mload(0x00), DAI_DOMAIN_SEPARATOR) {
                    mstore(0x14, owner)
                    mstore(0x00, 0x7ecebe00000000000000000000000000) // `nonces(address)`.
                    mstore(add(m, 0x94), staticcall(gas(), token, 0x10, 0x24, add(m, 0x54), 0x20))
                    mstore(m, 0x8fcbaf0c000000000000000000000000) // `IDAIPermit.permit`.
                    // `nonces` is already at `add(m, 0x54)`.
                    // `1` is already stored at `add(m, 0x94)`.
                    mstore(add(m, 0xb4), and(0xff, v))
                    mstore(add(m, 0xd4), r)
                    mstore(add(m, 0xf4), s)
                    success := call(gas(), token, 0, add(m, 0x10), 0x104, codesize(), 0x00)
                    break
                }
                mstore(m, 0xd505accf000000000000000000000000) // `IERC20Permit.permit`.
                mstore(add(m, 0x54), amount)
                mstore(add(m, 0x94), and(0xff, v))
                mstore(add(m, 0xb4), r)
                mstore(add(m, 0xd4), s)
                success := call(gas(), token, 0, add(m, 0x10), 0xe4, codesize(), 0x00)
                break
            }
        }
        if (!success) simplePermit2(token, owner, spender, amount, deadline, v, r, s);
    }

    /// @dev Simple permit on the Permit2 contract.
    function simplePermit2(
        address token,
        address owner,
        address spender,
        uint256 amount,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            mstore(m, 0x927da105) // `allowance(address,address,address)`.
            {
                let addressMask := shr(96, not(0))
                mstore(add(m, 0x20), and(addressMask, owner))
                mstore(add(m, 0x40), and(addressMask, token))
                mstore(add(m, 0x60), and(addressMask, spender))
                mstore(add(m, 0xc0), and(addressMask, spender))
            }
            let p := mul(PERMIT2, iszero(shr(160, amount)))
            if iszero(
                and( // The arguments of `and` are evaluated from right to left.
                    gt(returndatasize(), 0x5f), // Returns 3 words: `amount`, `expiration`, `nonce`.
                    staticcall(gas(), p, add(m, 0x1c), 0x64, add(m, 0x60), 0x60)
                )
            ) {
                mstore(0x00, 0x6b836e6b8757f0fd) // `Permit2Failed()` or `Permit2AmountOverflow()`.
                revert(add(0x18, shl(2, iszero(p))), 0x04)
            }
            mstore(m, 0x2b67b570) // `Permit2.permit` (PermitSingle variant).
            // `owner` is already `add(m, 0x20)`.
            // `token` is already at `add(m, 0x40)`.
            mstore(add(m, 0x60), amount)
            mstore(add(m, 0x80), 0xffffffffffff) // `expiration = type(uint48).max`.
            // `nonce` is already at `add(m, 0xa0)`.
            // `spender` is already at `add(m, 0xc0)`.
            mstore(add(m, 0xe0), deadline)
            mstore(add(m, 0x100), 0x100) // `signature` offset.
            mstore(add(m, 0x120), 0x41) // `signature` length.
            mstore(add(m, 0x140), r)
            mstore(add(m, 0x160), s)
            mstore(add(m, 0x180), shl(248, v))
            if iszero( // Revert if token does not have code, or if the call fails.
            mul(extcodesize(token), call(gas(), p, 0, add(m, 0x1c), 0x184, codesize(), 0x00))) {
                mstore(0x00, 0x6b836e6b) // `Permit2Failed()`.
                revert(0x1c, 0x04)
            }
        }
    }
}

File 5 of 12 : AccessControl.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/AccessControl.sol)

pragma solidity ^0.8.20;

import {IAccessControl} from "./IAccessControl.sol";
import {Context} from "../utils/Context.sol";
import {ERC165} from "../utils/introspection/ERC165.sol";

/**
 * @dev Contract module that allows children to implement role-based access
 * control mechanisms. This is a lightweight version that doesn't allow enumerating role
 * members except through off-chain means by accessing the contract event logs. Some
 * applications may benefit from on-chain enumerability, for those cases see
 * {AccessControlEnumerable}.
 *
 * Roles are referred to by their `bytes32` identifier. These should be exposed
 * in the external API and be unique. The best way to achieve this is by
 * using `public constant` hash digests:
 *
 * ```solidity
 * bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
 * ```
 *
 * Roles can be used to represent a set of permissions. To restrict access to a
 * function call, use {hasRole}:
 *
 * ```solidity
 * function foo() public {
 *     require(hasRole(MY_ROLE, msg.sender));
 *     ...
 * }
 * ```
 *
 * Roles can be granted and revoked dynamically via the {grantRole} and
 * {revokeRole} functions. Each role has an associated admin role, and only
 * accounts that have a role's admin role can call {grantRole} and {revokeRole}.
 *
 * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
 * that only accounts with this role will be able to grant or revoke other
 * roles. More complex role relationships can be created by using
 * {_setRoleAdmin}.
 *
 * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
 * grant and revoke this role. Extra precautions should be taken to secure
 * accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
 * to enforce additional security measures for this role.
 */
abstract contract AccessControl is Context, IAccessControl, ERC165 {
    struct RoleData {
        mapping(address account => bool) hasRole;
        bytes32 adminRole;
    }

    mapping(bytes32 role => RoleData) private _roles;

    bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;

    /**
     * @dev Modifier that checks that an account has a specific role. Reverts
     * with an {AccessControlUnauthorizedAccount} error including the required role.
     */
    modifier onlyRole(bytes32 role) {
        _checkRole(role);
        _;
    }

    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
    }

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) public view virtual returns (bool) {
        return _roles[role].hasRole[account];
    }

    /**
     * @dev Reverts with an {AccessControlUnauthorizedAccount} error if `_msgSender()`
     * is missing `role`. Overriding this function changes the behavior of the {onlyRole} modifier.
     */
    function _checkRole(bytes32 role) internal view virtual {
        _checkRole(role, _msgSender());
    }

    /**
     * @dev Reverts with an {AccessControlUnauthorizedAccount} error if `account`
     * is missing `role`.
     */
    function _checkRole(bytes32 role, address account) internal view virtual {
        if (!hasRole(role, account)) {
            revert AccessControlUnauthorizedAccount(account, role);
        }
    }

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) public view virtual returns (bytes32) {
        return _roles[role].adminRole;
    }

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleGranted} event.
     */
    function grantRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
        _grantRole(role, account);
    }

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleRevoked} event.
     */
    function revokeRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
        _revokeRole(role, account);
    }

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been revoked `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `callerConfirmation`.
     *
     * May emit a {RoleRevoked} event.
     */
    function renounceRole(bytes32 role, address callerConfirmation) public virtual {
        if (callerConfirmation != _msgSender()) {
            revert AccessControlBadConfirmation();
        }

        _revokeRole(role, callerConfirmation);
    }

    /**
     * @dev Sets `adminRole` as ``role``'s admin role.
     *
     * Emits a {RoleAdminChanged} event.
     */
    function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
        bytes32 previousAdminRole = getRoleAdmin(role);
        _roles[role].adminRole = adminRole;
        emit RoleAdminChanged(role, previousAdminRole, adminRole);
    }

    /**
     * @dev Attempts to grant `role` to `account` and returns a boolean indicating if `role` was granted.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleGranted} event.
     */
    function _grantRole(bytes32 role, address account) internal virtual returns (bool) {
        if (!hasRole(role, account)) {
            _roles[role].hasRole[account] = true;
            emit RoleGranted(role, account, _msgSender());
            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Attempts to revoke `role` to `account` and returns a boolean indicating if `role` was revoked.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleRevoked} event.
     */
    function _revokeRole(bytes32 role, address account) internal virtual returns (bool) {
        if (hasRole(role, account)) {
            _roles[role].hasRole[account] = false;
            emit RoleRevoked(role, account, _msgSender());
            return true;
        } else {
            return false;
        }
    }
}

File 6 of 12 : Pausable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Pausable.sol)

pragma solidity ^0.8.20;

import {Context} from "../utils/Context.sol";

/**
 * @dev Contract module which allows children to implement an emergency stop
 * mechanism that can be triggered by an authorized account.
 *
 * This module is used through inheritance. It will make available the
 * modifiers `whenNotPaused` and `whenPaused`, which can be applied to
 * the functions of your contract. Note that they will not be pausable by
 * simply including this module, only once the modifiers are put in place.
 */
abstract contract Pausable is Context {
    bool private _paused;

    /**
     * @dev Emitted when the pause is triggered by `account`.
     */
    event Paused(address account);

    /**
     * @dev Emitted when the pause is lifted by `account`.
     */
    event Unpaused(address account);

    /**
     * @dev The operation failed because the contract is paused.
     */
    error EnforcedPause();

    /**
     * @dev The operation failed because the contract is not paused.
     */
    error ExpectedPause();

    /**
     * @dev Initializes the contract in unpaused state.
     */
    constructor() {
        _paused = false;
    }

    /**
     * @dev Modifier to make a function callable only when the contract is not paused.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    modifier whenNotPaused() {
        _requireNotPaused();
        _;
    }

    /**
     * @dev Modifier to make a function callable only when the contract is paused.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    modifier whenPaused() {
        _requirePaused();
        _;
    }

    /**
     * @dev Returns true if the contract is paused, and false otherwise.
     */
    function paused() public view virtual returns (bool) {
        return _paused;
    }

    /**
     * @dev Throws if the contract is paused.
     */
    function _requireNotPaused() internal view virtual {
        if (paused()) {
            revert EnforcedPause();
        }
    }

    /**
     * @dev Throws if the contract is not paused.
     */
    function _requirePaused() internal view virtual {
        if (!paused()) {
            revert ExpectedPause();
        }
    }

    /**
     * @dev Triggers stopped state.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    function _pause() internal virtual whenNotPaused {
        _paused = true;
        emit Paused(_msgSender());
    }

    /**
     * @dev Returns to normal state.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    function _unpause() internal virtual whenPaused {
        _paused = false;
        emit Unpaused(_msgSender());
    }
}

File 7 of 12 : IOhenloErrors.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;

interface IOhenloErrors {
    /// @notice Thrown when insufficient ETH is sent for exercising options
    error InsufficientETHSent();

    /// @notice Thrown when trying to exercise after expiration block
    error OptionExpired();

    error InsufficientUnderlyingAsset();
    error OptionsNotExpired();
    error ZeroAmount();
    error InvalidPrice();
}

File 8 of 12 : ReentrancyGuard.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/ReentrancyGuard.sol)

pragma solidity ^0.8.20;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If EIP-1153 (transient storage) is available on the chain you're deploying at,
 * consider using {ReentrancyGuardTransient} instead.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant NOT_ENTERED = 1;
    uint256 private constant ENTERED = 2;

    uint256 private _status;

    /**
     * @dev Unauthorized reentrant call.
     */
    error ReentrancyGuardReentrantCall();

    constructor() {
        _status = NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be NOT_ENTERED
        if (_status == ENTERED) {
            revert ReentrancyGuardReentrantCall();
        }

        // Any calls to nonReentrant after this point will fail
        _status = ENTERED;
    }

    function _nonReentrantAfter() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = NOT_ENTERED;
    }

    /**
     * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
     * `nonReentrant` function in the call stack.
     */
    function _reentrancyGuardEntered() internal view returns (bool) {
        return _status == ENTERED;
    }
}

File 9 of 12 : IAccessControl.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (access/IAccessControl.sol)

pragma solidity ^0.8.20;

/**
 * @dev External interface of AccessControl declared to support ERC-165 detection.
 */
interface IAccessControl {
    /**
     * @dev The `account` is missing a role.
     */
    error AccessControlUnauthorizedAccount(address account, bytes32 neededRole);

    /**
     * @dev The caller of a function is not the expected one.
     *
     * NOTE: Don't confuse with {AccessControlUnauthorizedAccount}.
     */
    error AccessControlBadConfirmation();

    /**
     * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
     *
     * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
     * {RoleAdminChanged} not being emitted signaling this.
     */
    event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);

    /**
     * @dev Emitted when `account` is granted `role`.
     *
     * `sender` is the account that originated the contract call. This account bears the admin role (for the granted role).
     * Expected in cases where the role was granted using the internal {AccessControl-_grantRole}.
     */
    event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Emitted when `account` is revoked `role`.
     *
     * `sender` is the account that originated the contract call:
     *   - if using `revokeRole`, it is the admin role bearer
     *   - if using `renounceRole`, it is the role bearer (i.e. `account`)
     */
    event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) external view returns (bool);

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {AccessControl-_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) external view returns (bytes32);

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function grantRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function revokeRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been granted `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `callerConfirmation`.
     */
    function renounceRole(bytes32 role, address callerConfirmation) external;
}

File 10 of 12 : Context.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

File 11 of 12 : ERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/ERC165.sol)

pragma solidity ^0.8.20;

import {IERC165} from "./IERC165.sol";

/**
 * @dev Implementation of the {IERC165} interface.
 *
 * Contracts that want to implement ERC-165 should inherit from this contract and override {supportsInterface} to check
 * for the additional interface id that will be supported. For example:
 *
 * ```solidity
 * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
 *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
 * }
 * ```
 */
abstract contract ERC165 is IERC165 {
    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
        return interfaceId == type(IERC165).interfaceId;
    }
}

File 12 of 12 : IERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[ERC].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

Settings
{
  "remappings": [
    "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
    "ds-test/=lib/openzeppelin-contracts/lib/forge-std/lib/ds-test/src/",
    "erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
    "forge-std/=lib/forge-std/src/",
    "halmos-cheatcodes/=lib/openzeppelin-contracts/lib/halmos-cheatcodes/src/",
    "openzeppelin-contracts/=lib/openzeppelin-contracts/",
    "@solady/=lib/solady/src/",
    "solady/=lib/solady/src/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "ipfs",
    "appendCBOR": true
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "cancun",
  "viaIR": true,
  "libraries": {}
}

Contract Security Audit

Contract ABI

API
[{"inputs":[{"internalType":"address","name":"_token","type":"address"},{"internalType":"uint256","name":"_expiredBlock","type":"uint256"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AccessControlBadConfirmation","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"bytes32","name":"neededRole","type":"bytes32"}],"name":"AccessControlUnauthorizedAccount","type":"error"},{"inputs":[],"name":"AllowanceOverflow","type":"error"},{"inputs":[],"name":"AllowanceUnderflow","type":"error"},{"inputs":[],"name":"EnforcedPause","type":"error"},{"inputs":[],"name":"ExpectedPause","type":"error"},{"inputs":[],"name":"InsufficientAllowance","type":"error"},{"inputs":[],"name":"InsufficientBalance","type":"error"},{"inputs":[],"name":"InsufficientETHSent","type":"error"},{"inputs":[],"name":"InsufficientUnderlyingAsset","type":"error"},{"inputs":[],"name":"InvalidPermit","type":"error"},{"inputs":[],"name":"InvalidPrice","type":"error"},{"inputs":[],"name":"OptionExpired","type":"error"},{"inputs":[],"name":"OptionsNotExpired","type":"error"},{"inputs":[],"name":"Permit2AllowanceIsFixedAtInfinity","type":"error"},{"inputs":[],"name":"PermitExpired","type":"error"},{"inputs":[],"name":"ReentrancyGuardReentrantCall","type":"error"},{"inputs":[],"name":"TotalSupplyOverflow","type":"error"},{"inputs":[],"name":"ZeroAmount","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Paused","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"previousAdminRole","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"newAdminRole","type":"bytes32"}],"name":"RoleAdminChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleGranted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleRevoked","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Transfer","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Unpaused","type":"event"},{"inputs":[],"name":"DEFAULT_ADMIN_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"DOMAIN_SEPARATOR","outputs":[{"internalType":"bytes32","name":"result","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MINTER","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"TRANSFER_WHITELIST","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"active","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"result","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"result","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"burn","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"exercise","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"expiredBlock","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"}],"name":"getRoleAdmin","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"grantRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"hasRole","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"mint","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"nonces","outputs":[{"internalType":"uint256","name":"result","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"paused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"permit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"price","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"callerConfirmation","type":"address"}],"name":"renounceRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"revokeRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_price","type":"uint256"}],"name":"setPrice","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"token","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"result","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"}],"name":"withdrawNativeTokens","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"}],"name":"withdrawUnderlyingTokens","outputs":[],"stateMutability":"nonpayable","type":"function"}]

60c03461013c5761172190601f38839003908101601f19168201906001600160401b03821183831017610140578083916040958694855283398101031261013c578051906001600160a01b038216820361013c57602001519060ff1990600192828454168455836002554381111561012b5760a05261007d33610154565b50610087336101c0565b506100913361022a565b5061009a610294565b50608052815460ff811661011a57908291161790557f62e78cea01bee320cd4e420270b5ea74000d11b0c9f74754ebdbfc544b05a25860208251338152a151611374908161030d82396080518181816101b10152818161050a015281816106fb01526109a2015260a051818181610467015281816109690152610f2c0152f35b835163d93c066560e01b8152600490fd5b8451637676819d60e01b8152600490fd5b5f80fd5b634e487b7160e01b5f52604160045260245ffd5b6001600160a01b03165f8181525f80516020611701833981519152602052604090205460ff166101bb575f8181525f8051602061170183398151915260205260408120805460ff191660011790553391905f805160206116818339815191528180a4600190565b505f90565b6001600160a01b03165f8181525f805160206116a1833981519152602052604090205460ff166101bb575f8181525f805160206116a183398151915260205260408120805460ff191660011790553391906002905f805160206116818339815191529080a4600190565b6001600160a01b03165f8181525f805160206116c1833981519152602052604090205460ff166101bb575f8181525f805160206116c183398151915260205260408120805460ff191660019081179091553392915f805160206116818339815191529080a4600190565b5f80525f805160206116c18339815191526020525f805160206116e18339815191525460ff16610308575f8080525f805160206116c18339815191526020525f805160206116e1833981519152805460ff191660019081179091553391905f805160206116818339815191528280a4600190565b5f9056fe6080604090808252600480361015610015575f80fd5b5f3560e01c9182620be35614610f175750816301ffc9a714610ec357816302fb0c5e14610e0e57816306fdde0314610dc5578163095ea7b314610d5d57816318160ddd14610d3757816323b872dd14610c70578163248a9ca314610c475781632f2ff15d14610c1f578163313ce56714610c045781633644e51514610b4357816336568abe14610aff57816344df8e7014610aad5781635c975abb14610a8a5781636202ae391461094157816370a082311461090e5781637ecebe00146108db57816391b7f5ed146108bc57816391d148541461087957816395d89b4114610838578163a035b1fe1461081a578163a0712d68146106b0578163a217fddf14610696578163a9059cbb14610614578163ae7435fc146105d9578163b07f0a4114610440578163d505accf14610273578163d547741f1461023857508063dd62ed3e146101fb578063f5eeb9ee146101e0578063fc0c546a1461019d5763fe6d81241461017f575f80fd5b34610199575f366003190112610199576020905160028152f35b5f80fd5b5034610199575f36600319011261019957517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b5034610199575f366003190112610199576020905160018152f35b5034610199578060031936011261019957602090610217610f79565b61021f610f8f565b8352637f5e9f20600c525f526034600c20549051908152f35b8234610199578060031936011261019957610271913561026c600161025b610f8f565b93835f525f6020525f200154611065565b611211565b005b82346101995760e03660031901126101995761028d610f79565b610295610f8f565b60443590606435916084359460ff86168603610199578051936102b785610fa5565b60128552712432b736379027b83a34b7b7102a37b5b2b760711b6020809601528042116104345781519060018060a01b03809716968795169765383775081901600e52855f5260c087600c20938454937f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f8252848a83017f2e87d3bf5fc4e8d4c9a006d3c3e8079e8bcc043471ea4c9e32f1242e100b371281528d8985017fc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc68152606086019c8d469052608087019330855260a08820602e527f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c988525252898b525260a082015220604e526042602c205f5260ff16865260a435835260c435606052858060805f60015afa90873d5103610428577f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92597989950019055866303faf4f960a51b1790526034602c2055a3005b8963ddafbaef5f52601cfd5b87631a15a3cc5f52601cfd5b826020366003190112610199578135610457611283565b61045f6112a1565b80156105cb577f00000000000000000000000000000000000000000000000000000000000000004310156105bd5760035480156105af576387a211a2600c52335f52816020600c2054106105a057805f1904821161058e575b670de0b6b3a76400009082020434036105805780610505936104dc602093336112c2565b835163a9059cbb60e01b8152339181019182526020820192909252909384918291604090910190565b03815f7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03165af19081156105775750610548575b6001600255005b6105699060203d602011610570575b6105618183610fd5565b810190610ff7565b5080610541565b503d610557565b513d5f823e3d90fd5b505163311c9fd160e01b8152fd5b80156104b8578363bac65e5b5f52601cfd5b505051631e9acf1760e31b8152fd5b50505162bfc92160e01b8152fd5b5051637676819d60e01b8152fd5b5051631f2a200560e01b8152fd5b34610199576020366003190112610199575f6105f3610f79565b6105fb61100f565b81804738935af11561060957005b63b12d13eb5f52601cfd5b823461019957806003193601126101995761062d610f79565b6024359061063b8133611128565b6387a211a2600c52335f5260209384600c209081549081851161068b575083900390555f5282600c208181540190558252600c5160601c335f8051602061131f8339815191528480a35160018152f35b63f4d678b85f52601cfd5b8234610199575f36600319011261019957602090515f8152f35b823461019957602091826003193601126101995780359160025f525f8452805f20335f52845260ff815f205416156107fc5780516370a0823160e01b815230838201529184836024817f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03165afa9283156107f2575f936107c3575b506805345cdf77eb68f44c91825490858201948583116107b05785116107a1575061075d336110a6565b83106107965750556387a211a2600c52335f5281600c2081815401905581525f5f8051602061131f833981519152600c5160601c9280a3005b63e5cfe9575f52601cfd5b516317e0b39760e21b81529050fd5b601184634e487b7160e01b5f525260245ffd5b9092508481813d83116107eb575b6107db8183610fd5565b8101031261019957519185610733565b503d6107d1565b82513d5f823e3d90fd5b60449250519063e2517d3f60e01b8252339082015260026024820152fd5b8234610199575f366003190112610199576020906003549051908152f35b8234610199575f3660031901126101995780516108759161085882610fa5565b60068252656f48454e4c4f60d01b60208301525191829182610f4f565b0390f35b8234610199578060031936011261019957602091610895610f8f565b90355f525f8352815f209060018060a01b03165f52825260ff815f20541690519015158152f35b34610199576020366003190112610199576108d561100f565b35600355005b8234610199576020366003190112610199576020906108f8610f79565b6338377508600c525f5281600c20549051908152f35b82346101995760203660031901126101995760209061092b610f79565b6387a211a2600c525f5281600c20549051908152f35b90503461019957602091826003193601126101995761095e610f79565b9161096761100f565b7f00000000000000000000000000000000000000000000000000000000000000004310610a7c5781516370a0823160e01b81523082820152907f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316908583602481855afa928315610a725790869392915f93610a3f575b50845163a9059cbb60e01b81526001600160a01b039096169086019081526020810192909252849182905f90829060400103925af19081156105775750610a2957005b8161027192903d10610570576105618183610fd5565b8481959294503d8311610a6b575b610a578183610fd5565b81010312610199579151859290915f6109e6565b503d610a4d565b84513d5f823e3d90fd5b9051631673b38b60e11b8152fd5b8234610199575f3660031901126101995760209060ff6001541690519015158152f35b8234610199575f36600319011261019957610ac6611283565b610ace6112a1565b6387a211a2600c52335f526020600c2054908115610af05761054182336112c2565b51631e9acf1760e31b81529050fd5b8234610199578060031936011261019957610b18610f8f565b90336001600160a01b03831603610b3457506102719135611211565b5163334bd91960e11b81529050fd5b8234610199575f3660031901126101995780712432b736379027b83a34b7b7102a37b5b2b760711b6020809351610b7981610fa5565b60128152015260a081517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f81527f2e87d3bf5fc4e8d4c9a006d3c3e8079e8bcc043471ea4c9e32f1242e100b3712848201527fc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc683820152466060820152306080820152209051908152f35b8234610199575f366003190112610199576020905160128152f35b82346101995780600319360112610199576102719135610c42600161025b610f8f565b611195565b823461019957602036600319011261019957602091355f525f82526001815f2001549051908152f35b823461019957606036600319011261019957610c8a610f79565b610c92610f8f565b604435610c9f8284611128565b8260601b91602095338752600c93637f5e9f20811785526034852080548019610d14575b50506387a211a21784528684209081549081851161068b575083900390555f5284822080548201905584525160601c906001600160a01b03165f8051602061131f8339815191528480a35160018152f35b808611610d2b5785900390556387a211a289610cc3565b836313be252b5f52601cfd5b8234610199575f366003190112610199576020906805345cdf77eb68f44c549051908152f35b8234610199578060031936011261019957602090610d79610f79565b602435908352637f5e9f20600c52335f52806034600c20555f52602c5160601c337f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925845fa35160018152f35b8234610199575f36600319011261019957805161087591610de582610fa5565b60128252712432b736379027b83a34b7b7102a37b5b2b760711b60208301525191829182610f4f565b8234610199575f36600319011261019957610e2761100f565b60015460ff811615610e8357506001549160ff831615610e7557506020907f5db9ee0a495bf2e6ff9c91a7834c1ba4fdd244a5e8aa4e537bd38aeae4b073aa9260ff191660015551338152a1005b9051638dfc202b60e01b8152fd5b7f62e78cea01bee320cd4e420270b5ea74000d11b0c9f74754ebdbfc544b05a2589250906001602092610eb4611283565b60ff19161760015551338152a1005b905034610199576020366003190112610199573563ffffffff60e01b811680910361019957602091637965db0b60e01b8214918215610f06575b50519015158152f35b6301ffc9a760e01b1491505f610efd565b34610199575f366003190112610199576020907f00000000000000000000000000000000000000000000000000000000000000008152f35b602060409281835280519182918282860152018484015e5f828201840152601f01601f1916010190565b600435906001600160a01b038216820361019957565b602435906001600160a01b038216820361019957565b6040810190811067ffffffffffffffff821117610fc157604052565b634e487b7160e01b5f52604160045260245ffd5b90601f8019910116810190811067ffffffffffffffff821117610fc157604052565b90816020910312610199575180151581036101995790565b335f9081527fad3228b676f7d3cd4284a5443f17f1962b36e491b30a40b2405849e597ba5fb5602052604090205460ff161561104757565b60405163e2517d3f60e01b81523360048201525f6024820152604490fd5b805f525f60205260405f20335f5260205260ff60405f205416156110865750565b60405163e2517d3f60e01b81523360048201526024810191909152604490fd5b6001600160a01b031615611126575f80527fada5013122d395ba3c54772283fb069b10426056ef8ca54750cb9bb552a59e7d6020527f871b3b0713ea5d7fd1f75a811c349209996193f3a2535cdfd79d35416bf801235460ff161561110757565b60405163e2517d3f60e01b81525f600482015260016024820152604490fd5b565b906001600160a01b039081161561119157165f8181527fada5013122d395ba3c54772283fb069b10426056ef8ca54750cb9bb552a59e7d602052604090205460ff16156111725750565b6044906040519063e2517d3f60e01b8252600482015260016024820152fd5b5050565b90815f525f60205260405f209060018060a01b031690815f5260205260ff60405f205416155f1461120b57815f525f60205260405f20815f5260205260405f20600160ff1982541617905533917f2f8788117e7eff1d82e926ec794901d17c78024a50270940304540a733656f0d5f80a4600190565b50505f90565b90815f525f60205260405f209060018060a01b031690815f5260205260ff60405f2054165f1461120b57815f525f60205260405f20815f5260205260405f2060ff19815416905533917ff6391f5c32d9c69d2a47ea670b442974b53935d1edc7fd64eb21e047a839171b5f80a4600190565b60ff6001541661128f57565b60405163d93c066560e01b8152600490fd5b60028054146112b05760028055565b604051633ee5aeb560e01b8152600490fd5b6387a211a2600c52805f526020600c209182549283821161131157815f940390556805345cdf77eb68f44c818154039055825260018060a01b03165f8051602061131f833981519152602083a3565b63f4d678b85f526004601cfdfeddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3efa2646970667358221220e4d1dff9c8ae12f23ed63847432bbc12996eb5c34502bf210feb66b4202d96a364736f6c634300081900332f8788117e7eff1d82e926ec794901d17c78024a50270940304540a733656f0dabbb5caa7dda850e60932de0934eb1f9d0f59695050f761dc64e443e5030a569ada5013122d395ba3c54772283fb069b10426056ef8ca54750cb9bb552a59e7d871b3b0713ea5d7fd1f75a811c349209996193f3a2535cdfd79d35416bf80123ad3228b676f7d3cd4284a5443f17f1962b36e491b30a40b2405849e597ba5fb5000000000000000000000000b2f776e9c1c926c4b2e54182fac058da9af0b6a500000000000000000000000000000000000000000000000000000000002825c5

Deployed Bytecode

0x6080604090808252600480361015610015575f80fd5b5f3560e01c9182620be35614610f175750816301ffc9a714610ec357816302fb0c5e14610e0e57816306fdde0314610dc5578163095ea7b314610d5d57816318160ddd14610d3757816323b872dd14610c70578163248a9ca314610c475781632f2ff15d14610c1f578163313ce56714610c045781633644e51514610b4357816336568abe14610aff57816344df8e7014610aad5781635c975abb14610a8a5781636202ae391461094157816370a082311461090e5781637ecebe00146108db57816391b7f5ed146108bc57816391d148541461087957816395d89b4114610838578163a035b1fe1461081a578163a0712d68146106b0578163a217fddf14610696578163a9059cbb14610614578163ae7435fc146105d9578163b07f0a4114610440578163d505accf14610273578163d547741f1461023857508063dd62ed3e146101fb578063f5eeb9ee146101e0578063fc0c546a1461019d5763fe6d81241461017f575f80fd5b34610199575f366003190112610199576020905160028152f35b5f80fd5b5034610199575f36600319011261019957517f000000000000000000000000b2f776e9c1c926c4b2e54182fac058da9af0b6a56001600160a01b03168152602090f35b5034610199575f366003190112610199576020905160018152f35b5034610199578060031936011261019957602090610217610f79565b61021f610f8f565b8352637f5e9f20600c525f526034600c20549051908152f35b8234610199578060031936011261019957610271913561026c600161025b610f8f565b93835f525f6020525f200154611065565b611211565b005b82346101995760e03660031901126101995761028d610f79565b610295610f8f565b60443590606435916084359460ff86168603610199578051936102b785610fa5565b60128552712432b736379027b83a34b7b7102a37b5b2b760711b6020809601528042116104345781519060018060a01b03809716968795169765383775081901600e52855f5260c087600c20938454937f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f8252848a83017f2e87d3bf5fc4e8d4c9a006d3c3e8079e8bcc043471ea4c9e32f1242e100b371281528d8985017fc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc68152606086019c8d469052608087019330855260a08820602e527f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c988525252898b525260a082015220604e526042602c205f5260ff16865260a435835260c435606052858060805f60015afa90873d5103610428577f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92597989950019055866303faf4f960a51b1790526034602c2055a3005b8963ddafbaef5f52601cfd5b87631a15a3cc5f52601cfd5b826020366003190112610199578135610457611283565b61045f6112a1565b80156105cb577f00000000000000000000000000000000000000000000000000000000002825c54310156105bd5760035480156105af576387a211a2600c52335f52816020600c2054106105a057805f1904821161058e575b670de0b6b3a76400009082020434036105805780610505936104dc602093336112c2565b835163a9059cbb60e01b8152339181019182526020820192909252909384918291604090910190565b03815f7f000000000000000000000000b2f776e9c1c926c4b2e54182fac058da9af0b6a56001600160a01b03165af19081156105775750610548575b6001600255005b6105699060203d602011610570575b6105618183610fd5565b810190610ff7565b5080610541565b503d610557565b513d5f823e3d90fd5b505163311c9fd160e01b8152fd5b80156104b8578363bac65e5b5f52601cfd5b505051631e9acf1760e31b8152fd5b50505162bfc92160e01b8152fd5b5051637676819d60e01b8152fd5b5051631f2a200560e01b8152fd5b34610199576020366003190112610199575f6105f3610f79565b6105fb61100f565b81804738935af11561060957005b63b12d13eb5f52601cfd5b823461019957806003193601126101995761062d610f79565b6024359061063b8133611128565b6387a211a2600c52335f5260209384600c209081549081851161068b575083900390555f5282600c208181540190558252600c5160601c335f8051602061131f8339815191528480a35160018152f35b63f4d678b85f52601cfd5b8234610199575f36600319011261019957602090515f8152f35b823461019957602091826003193601126101995780359160025f525f8452805f20335f52845260ff815f205416156107fc5780516370a0823160e01b815230838201529184836024817f000000000000000000000000b2f776e9c1c926c4b2e54182fac058da9af0b6a56001600160a01b03165afa9283156107f2575f936107c3575b506805345cdf77eb68f44c91825490858201948583116107b05785116107a1575061075d336110a6565b83106107965750556387a211a2600c52335f5281600c2081815401905581525f5f8051602061131f833981519152600c5160601c9280a3005b63e5cfe9575f52601cfd5b516317e0b39760e21b81529050fd5b601184634e487b7160e01b5f525260245ffd5b9092508481813d83116107eb575b6107db8183610fd5565b8101031261019957519185610733565b503d6107d1565b82513d5f823e3d90fd5b60449250519063e2517d3f60e01b8252339082015260026024820152fd5b8234610199575f366003190112610199576020906003549051908152f35b8234610199575f3660031901126101995780516108759161085882610fa5565b60068252656f48454e4c4f60d01b60208301525191829182610f4f565b0390f35b8234610199578060031936011261019957602091610895610f8f565b90355f525f8352815f209060018060a01b03165f52825260ff815f20541690519015158152f35b34610199576020366003190112610199576108d561100f565b35600355005b8234610199576020366003190112610199576020906108f8610f79565b6338377508600c525f5281600c20549051908152f35b82346101995760203660031901126101995760209061092b610f79565b6387a211a2600c525f5281600c20549051908152f35b90503461019957602091826003193601126101995761095e610f79565b9161096761100f565b7f00000000000000000000000000000000000000000000000000000000002825c54310610a7c5781516370a0823160e01b81523082820152907f000000000000000000000000b2f776e9c1c926c4b2e54182fac058da9af0b6a56001600160a01b0316908583602481855afa928315610a725790869392915f93610a3f575b50845163a9059cbb60e01b81526001600160a01b039096169086019081526020810192909252849182905f90829060400103925af19081156105775750610a2957005b8161027192903d10610570576105618183610fd5565b8481959294503d8311610a6b575b610a578183610fd5565b81010312610199579151859290915f6109e6565b503d610a4d565b84513d5f823e3d90fd5b9051631673b38b60e11b8152fd5b8234610199575f3660031901126101995760209060ff6001541690519015158152f35b8234610199575f36600319011261019957610ac6611283565b610ace6112a1565b6387a211a2600c52335f526020600c2054908115610af05761054182336112c2565b51631e9acf1760e31b81529050fd5b8234610199578060031936011261019957610b18610f8f565b90336001600160a01b03831603610b3457506102719135611211565b5163334bd91960e11b81529050fd5b8234610199575f3660031901126101995780712432b736379027b83a34b7b7102a37b5b2b760711b6020809351610b7981610fa5565b60128152015260a081517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f81527f2e87d3bf5fc4e8d4c9a006d3c3e8079e8bcc043471ea4c9e32f1242e100b3712848201527fc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc683820152466060820152306080820152209051908152f35b8234610199575f366003190112610199576020905160128152f35b82346101995780600319360112610199576102719135610c42600161025b610f8f565b611195565b823461019957602036600319011261019957602091355f525f82526001815f2001549051908152f35b823461019957606036600319011261019957610c8a610f79565b610c92610f8f565b604435610c9f8284611128565b8260601b91602095338752600c93637f5e9f20811785526034852080548019610d14575b50506387a211a21784528684209081549081851161068b575083900390555f5284822080548201905584525160601c906001600160a01b03165f8051602061131f8339815191528480a35160018152f35b808611610d2b5785900390556387a211a289610cc3565b836313be252b5f52601cfd5b8234610199575f366003190112610199576020906805345cdf77eb68f44c549051908152f35b8234610199578060031936011261019957602090610d79610f79565b602435908352637f5e9f20600c52335f52806034600c20555f52602c5160601c337f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925845fa35160018152f35b8234610199575f36600319011261019957805161087591610de582610fa5565b60128252712432b736379027b83a34b7b7102a37b5b2b760711b60208301525191829182610f4f565b8234610199575f36600319011261019957610e2761100f565b60015460ff811615610e8357506001549160ff831615610e7557506020907f5db9ee0a495bf2e6ff9c91a7834c1ba4fdd244a5e8aa4e537bd38aeae4b073aa9260ff191660015551338152a1005b9051638dfc202b60e01b8152fd5b7f62e78cea01bee320cd4e420270b5ea74000d11b0c9f74754ebdbfc544b05a2589250906001602092610eb4611283565b60ff19161760015551338152a1005b905034610199576020366003190112610199573563ffffffff60e01b811680910361019957602091637965db0b60e01b8214918215610f06575b50519015158152f35b6301ffc9a760e01b1491505f610efd565b34610199575f366003190112610199576020907f00000000000000000000000000000000000000000000000000000000002825c58152f35b602060409281835280519182918282860152018484015e5f828201840152601f01601f1916010190565b600435906001600160a01b038216820361019957565b602435906001600160a01b038216820361019957565b6040810190811067ffffffffffffffff821117610fc157604052565b634e487b7160e01b5f52604160045260245ffd5b90601f8019910116810190811067ffffffffffffffff821117610fc157604052565b90816020910312610199575180151581036101995790565b335f9081527fad3228b676f7d3cd4284a5443f17f1962b36e491b30a40b2405849e597ba5fb5602052604090205460ff161561104757565b60405163e2517d3f60e01b81523360048201525f6024820152604490fd5b805f525f60205260405f20335f5260205260ff60405f205416156110865750565b60405163e2517d3f60e01b81523360048201526024810191909152604490fd5b6001600160a01b031615611126575f80527fada5013122d395ba3c54772283fb069b10426056ef8ca54750cb9bb552a59e7d6020527f871b3b0713ea5d7fd1f75a811c349209996193f3a2535cdfd79d35416bf801235460ff161561110757565b60405163e2517d3f60e01b81525f600482015260016024820152604490fd5b565b906001600160a01b039081161561119157165f8181527fada5013122d395ba3c54772283fb069b10426056ef8ca54750cb9bb552a59e7d602052604090205460ff16156111725750565b6044906040519063e2517d3f60e01b8252600482015260016024820152fd5b5050565b90815f525f60205260405f209060018060a01b031690815f5260205260ff60405f205416155f1461120b57815f525f60205260405f20815f5260205260405f20600160ff1982541617905533917f2f8788117e7eff1d82e926ec794901d17c78024a50270940304540a733656f0d5f80a4600190565b50505f90565b90815f525f60205260405f209060018060a01b031690815f5260205260ff60405f2054165f1461120b57815f525f60205260405f20815f5260205260405f2060ff19815416905533917ff6391f5c32d9c69d2a47ea670b442974b53935d1edc7fd64eb21e047a839171b5f80a4600190565b60ff6001541661128f57565b60405163d93c066560e01b8152600490fd5b60028054146112b05760028055565b604051633ee5aeb560e01b8152600490fd5b6387a211a2600c52805f526020600c209182549283821161131157815f940390556805345cdf77eb68f44c818154039055825260018060a01b03165f8051602061131f833981519152602083a3565b63f4d678b85f526004601cfdfeddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3efa2646970667358221220e4d1dff9c8ae12f23ed63847432bbc12996eb5c34502bf210feb66b4202d96a364736f6c63430008190033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

000000000000000000000000b2f776e9c1c926c4b2e54182fac058da9af0b6a500000000000000000000000000000000000000000000000000000000002825c5

-----Decoded View---------------
Arg [0] : _token (address): 0xb2F776e9c1C926C4b2e54182Fac058dA9Af0B6A5
Arg [1] : _expiredBlock (uint256): 2631109

-----Encoded View---------------
2 Constructor Arguments found :
Arg [0] : 000000000000000000000000b2f776e9c1c926c4b2e54182fac058da9af0b6a5
Arg [1] : 00000000000000000000000000000000000000000000000000000000002825c5


Block Transaction Gas Used Reward
view all blocks produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.