More Info
Private Name Tags
ContractCreator
TokenTracker
Multichain Info
No addresses found
Latest 25 from a total of 42,367 transactions
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
Approve | 2603026 | 1 min ago | IN | 0 BERA | 0 | ||||
Approve | 2602958 | 3 mins ago | IN | 0 BERA | 0 | ||||
Approve | 2602801 | 8 mins ago | IN | 0 BERA | 0 | ||||
Approve | 2602668 | 12 mins ago | IN | 0 BERA | 0 | ||||
Approve | 2602488 | 18 mins ago | IN | 0 BERA | 0 | ||||
Approve | 2602448 | 20 mins ago | IN | 0 BERA | 0 | ||||
Approve | 2602309 | 24 mins ago | IN | 0 BERA | 0 | ||||
Approve | 2602202 | 28 mins ago | IN | 0 BERA | 0 | ||||
Approve | 2602155 | 29 mins ago | IN | 0 BERA | 0 | ||||
Approve | 2602039 | 33 mins ago | IN | 0 BERA | 0.00000004 | ||||
Approve | 2601958 | 36 mins ago | IN | 0 BERA | 0 | ||||
Approve | 2601952 | 36 mins ago | IN | 0 BERA | 0 | ||||
Approve | 2601922 | 37 mins ago | IN | 0 BERA | 0 | ||||
Approve | 2601874 | 38 mins ago | IN | 0 BERA | 0 | ||||
Approve | 2601811 | 40 mins ago | IN | 0 BERA | 0 | ||||
Approve | 2601698 | 44 mins ago | IN | 0 BERA | 0 | ||||
Approve | 2601452 | 52 mins ago | IN | 0 BERA | 0 | ||||
Approve | 2601382 | 54 mins ago | IN | 0 BERA | 0 | ||||
Approve | 2601339 | 55 mins ago | IN | 0 BERA | 0 | ||||
Approve | 2601164 | 1 hr ago | IN | 0 BERA | 0.00000259 | ||||
Approve | 2601107 | 1 hr ago | IN | 0 BERA | 0 | ||||
Approve | 2600955 | 1 hr ago | IN | 0 BERA | 0.00000004 | ||||
Approve | 2600762 | 1 hr ago | IN | 0 BERA | 0 | ||||
Approve | 2600642 | 1 hr ago | IN | 0 BERA | 0 | ||||
Approve | 2600560 | 1 hr ago | IN | 0 BERA | 0 |
Latest 25 internal transactions (View All)
Parent Transaction Hash | Block | From | To | |||
---|---|---|---|---|---|---|
958229 | 38 days ago | 0.1 BERA | ||||
958229 | 38 days ago | 0.1 BERA | ||||
958228 | 38 days ago | 0.1 BERA | ||||
958228 | 38 days ago | 0.1 BERA | ||||
958228 | 38 days ago | 0.1 BERA | ||||
958228 | 38 days ago | 0.1 BERA | ||||
958227 | 38 days ago | 0.1 BERA | ||||
958227 | 38 days ago | 0.1 BERA | ||||
958227 | 38 days ago | 0.1 BERA | ||||
958227 | 38 days ago | 0.1 BERA | ||||
958227 | 38 days ago | 0.1 BERA | ||||
958227 | 38 days ago | 0.1 BERA | ||||
958227 | 38 days ago | 0.1 BERA | ||||
958227 | 38 days ago | 0.1 BERA | ||||
958225 | 38 days ago | 0.1 BERA | ||||
958225 | 38 days ago | 0.1 BERA | ||||
958225 | 38 days ago | 0.1 BERA | ||||
958225 | 38 days ago | 0.1 BERA | ||||
958085 | 38 days ago | 0.1 BERA | ||||
958085 | 38 days ago | 0.1 BERA | ||||
958085 | 38 days ago | 0.1 BERA | ||||
958085 | 38 days ago | 0.1 BERA | ||||
958085 | 38 days ago | 0.1 BERA | ||||
958085 | 38 days ago | 0.1 BERA | ||||
958085 | 38 days ago | 0.1 BERA |
Loading...
Loading
Minimal Proxy Contract for 0x682707f31350423980009161c8e696a8fb068b0d
Contract Name:
PandaToken
Compiler Version
v0.8.19+commit.7dd6d404
Optimization Enabled:
Yes with 200 runs
Other Settings:
paris EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT pragma solidity =0.8.19; import {ERC20Permit, ERC20} from "@openzeppelin/contracts/token/ERC20/extensions/ERC20Permit.sol"; import {Math} from "@openzeppelin/contracts/utils/math/Math.sol"; import {PandaPool, TransferHelper, IERC20} from "src/panda/PandaPool.sol"; import {PandaMath} from "src/libraries/PandaMath.sol"; import "src/interfaces/IV2Pair.sol"; import "src/interfaces/IV2Factory.sol"; contract PandaToken is ERC20Permit, PandaPool { using Math for uint256; address public dexFactory; address public dexPair; string private _name; string private _symbol; function VERSION() external pure virtual override returns (string memory) { return "PandaTokenV1"; } function name() public view override returns (string memory) { return _name; } function symbol() public view override returns (string memory) { return _symbol; } constructor() ERC20Permit("PandaToken") ERC20("PandaToken", "PT") PandaPool() {} function _beforeInitializePool(bytes calldata data) internal override { _mint(address(this), pandaFactory.TOKEN_SUPPLY()); (_name, _symbol) = abi.decode(data, (string, string)); } function _afterInitializePool(bytes calldata /*data*/) internal override { require(vestingPeriod == 0, "PandaToken: VESTING_NONZERO"); //We don't allow vesting in the standard PandaToken require(totalTokens == pandaFactory.TOKEN_SUPPLY(), "PandaToken: INVALID_SUPPLY"); //Has to use default total supply dexFactory = pandaFactory.dexFactory(); dexPair = PandaMath.getDexPair(address(this), baseToken, dexFactory, pandaFactory.initCodeHash()); } function _moveLiquidity() internal override { address _pandaToken = pandaToken; address _baseToken = baseToken; IV2Factory _dexFactory = IV2Factory(dexFactory); uint256 graduationFeeInBaseTokens = baseReserve * poolFees.graduationFee / PandaMath.FEE_SCALE; uint256 amountBase = baseReserve - graduationFeeInBaseTokens; //PandaTokens added to LP calculated such that the dex price is the same as the price at graduation //If exactly 100% of the tokensInPool are sold, amountPanda == tokensForLp and price == sqrtPb**2 //If slightly less than 100% are sold: tokensForLp <= amountPanda <= tokensForLp+pandaReserve uint256 amountPanda = amountBase.mulDiv(PandaMath.PRICE_SCALE, getCurrentPrice(), Math.Rounding.Down); //Enforce the bounds discussed if(amountPanda > tokensForLp + pandaReserve) {amountPanda = tokensForLp + pandaReserve;} if(amountPanda < tokensForLp) {amountPanda = tokensForLp;} //Create pair if necessary address pair = _dexFactory.getPair(_pandaToken, _baseToken); if(pair == address(0)) { pair = _dexFactory.createPair(_pandaToken, _baseToken); } require(pair == dexPair, "PandaPool: INVALID_PAIR"); //mark graduated graduated = true; graduationTime = block.timestamp; TransferHelper.safeTransfer(_pandaToken, pair, amountPanda); TransferHelper.safeTransfer(_baseToken, pair, amountBase); IV2Pair(pair).mint(DEADADDRESS); tokensForLp = 0; //Deployer fee share uint256 deployerFee = graduationFeeInBaseTokens * poolFees.deployerFeeShare / PandaMath.FEE_SCALE; TransferHelper.safeTransfer(_baseToken, deployer, deployerFee); //Transfer remaining baseTokens to the treasury TransferHelper.safeTransfer(_baseToken, treasury, IERC20(_baseToken).balanceOf(address(this))); emit LiquidityMoved(amountPanda, amountBase); } //transfer blacklist the v2 pool until graduated from PandaPool function _beforeTokenTransfer(address /*from*/, address to, uint256 /*amount*/) internal view override { require(graduated || to != dexPair, "PandaToken: INVALID_TRANSFER"); } // No approvals needed to trade within the bonding curve function allowance(address owner, address spender) public view override returns (uint256) { if (spender == address(this)) { return type(uint256).max; } else { return super.allowance(owner, spender); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.4) (token/ERC20/extensions/ERC20Permit.sol) pragma solidity ^0.8.0; import "./IERC20Permit.sol"; import "../ERC20.sol"; import "../../../utils/cryptography/ECDSA.sol"; import "../../../utils/cryptography/EIP712.sol"; import "../../../utils/Counters.sol"; /** * @dev Implementation of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. * * _Available since v3.4._ */ abstract contract ERC20Permit is ERC20, IERC20Permit, EIP712 { using Counters for Counters.Counter; mapping(address => Counters.Counter) private _nonces; // solhint-disable-next-line var-name-mixedcase bytes32 private constant _PERMIT_TYPEHASH = keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"); /** * @dev In previous versions `_PERMIT_TYPEHASH` was declared as `immutable`. * However, to ensure consistency with the upgradeable transpiler, we will continue * to reserve a slot. * @custom:oz-renamed-from _PERMIT_TYPEHASH */ // solhint-disable-next-line var-name-mixedcase bytes32 private _PERMIT_TYPEHASH_DEPRECATED_SLOT; /** * @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`. * * It's a good idea to use the same `name` that is defined as the ERC20 token name. */ constructor(string memory name) EIP712(name, "1") {} /** * @inheritdoc IERC20Permit */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) public virtual override { require(block.timestamp <= deadline, "ERC20Permit: expired deadline"); bytes32 structHash = keccak256(abi.encode(_PERMIT_TYPEHASH, owner, spender, value, _useNonce(owner), deadline)); bytes32 hash = _hashTypedDataV4(structHash); address signer = ECDSA.recover(hash, v, r, s); require(signer == owner, "ERC20Permit: invalid signature"); _approve(owner, spender, value); } /** * @inheritdoc IERC20Permit */ function nonces(address owner) public view virtual override returns (uint256) { return _nonces[owner].current(); } /** * @inheritdoc IERC20Permit */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view override returns (bytes32) { return _domainSeparatorV4(); } /** * @dev "Consume a nonce": return the current value and increment. * * _Available since v4.1._ */ function _useNonce(address owner) internal virtual returns (uint256 current) { Counters.Counter storage nonce = _nonces[owner]; current = nonce.current(); nonce.increment(); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol) pragma solidity ^0.8.0; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Down, // Toward negative infinity Up, // Toward infinity Zero // Toward zero } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds up instead * of rounding down. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) * with further edits by Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. require(denominator > prod1, "Math: mulDiv overflow"); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 twos = denominator & (~denominator + 1); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (rounding == Rounding.Up && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2, rounded down, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10, rounded down, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0); } } /** * @dev Return the log in base 256, rounded down, of a positive value. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0); } } }
// SPDX-License-Identifier: MIT pragma solidity =0.8.19; import "@openzeppelin/contracts/security/ReentrancyGuard.sol"; import {Math} from "@openzeppelin/contracts/utils/math/Math.sol"; import "src/interfaces/IWETH.sol"; import "src/interfaces/IPandaFactory.sol"; import "src/libraries/TransferHelper.sol"; import {PandaMath} from "src/libraries/PandaMath.sol"; //import "forge-std/console.sol"; //Panda Pools bonding curve work like providing single-sided liquidity into a UniV3 style dex. //Since all the liquidity is provided in the token and there are no other liquidity providers, this simplifies to a swapping within a single-tick case in UniV3 abstract contract PandaPool is ReentrancyGuard { using Math for uint256; IPandaFactory public pandaFactory; address public pandaToken; //pandaToken address public baseToken; //baseToken address public treasury; address internal constant DEADADDRESS = 0x000000000000000000000000000000000000dEaD; uint256 public constant GRADUATION_THRESHOLD = 25; //Move liquidity when this many bps of the pool remains (< 25 bps) //Fees IPandaStructs.PandaFees public poolFees; //Deployer address public deployer; //User that deployed the pool //Note the pool settings are analogous to single-sided liquidity provision on uniswap //Pool configs (inputs) uint256 public sqrtPa; //sqrt(P_a), sqrt of lower bound price uint256 public sqrtPb; //sqrt(P_b), sqrt of upper bound price uint256 public totalTokens; //Total tokens in pool uint256 public minTradeSize; //Minimum trade size in baseToken uint256 public vestingPeriod; //Vesting period for deployer incentives address public wbera; //Wrapped Bera address to enable native BERA swaps //Pool settings (calculated, constant) uint256 public tokensForLp; uint256 public tokensInPool; uint256 public totalRaise; //Total base token raised with fees to complete the pool uint256 public liquidity; //L, which is constant given P_a, P_b, and tokensInPool. L = tokensInPool * (sqrtPa * sqrtPb) / (sqrtPb - sqrtPa) //Pool state (variables, tracks how much has been bought/sold in the pool) uint256 public sqrtP; //sqrt(P), current price, ranges from sqrtPa to sqrtPb uint256 public pandaReserve; //amount of panda token in pool (real reserve, not virtual) uint256 public baseReserve; //amount of base token in pool (real reserve, not virtual) bool private initialized; //PandaPool initialized (can only be done once, by factory) mapping(address => uint256) public tokensBoughtInPool; //net amount each user has bought (regardless of transfers) mapping(address => uint256) public tokensClaimed; //amount each user has claimed (when vesting is on) //Graduation state bool public graduated = false; //Flag to mark pool as graduated (after moveLiquidity is called) uint256 public graduationTime; //Time of graduation // called once by the factory at time of deployment function initializePool( address _pandaToken, IPandaStructs.PandaPoolParams calldata pp, uint256 _totalTokens, address _deployer, bytes calldata data ) external { require(!initialized, "PandaPool: ALREADY_INITIALIZED"); pandaFactory = IPandaFactory(msg.sender); _beforeInitializePool(data); treasury = pandaFactory.treasury(); IPandaStructs.PandaFees memory _poolFees = pandaFactory.getPoolFees(); require(_poolFees.buyFee <= PandaMath.MAX_FEE && _poolFees.sellFee <= PandaMath.MAX_FEE && _poolFees.graduationFee <= PandaMath.MAX_FEE && _poolFees.deployerFeeShare <= PandaMath.MAX_DEPLOYER_FEE_SHARE, "PandaPool: FEES_MISCONFIGURED"); poolFees = _poolFees; require(_pandaToken != pp.baseToken, "PandaPool: IDENTICAL_ADDRESSES"); require(_pandaToken != address(0) && pp.baseToken != address(0), "PandaPool: ZERO_ADDRESS"); pandaToken = _pandaToken; baseToken = pp.baseToken; wbera = pandaFactory.wbera(); totalTokens = _totalTokens; require(pp.sqrtPb > pp.sqrtPa, "PandaPool: PRICE_MISCONFIGURED"); require(pp.sqrtPa > 0, "PandaPool: INVALID_START_PRICE"); uint256 _tokensInPool = getTokensInPool(pp.sqrtPa, pp.sqrtPb, _totalTokens, _poolFees.graduationFee); require(tokensInPool <= totalTokens, "PandaPool: INVALID_TOKENSINPOOL"); tokensInPool = _tokensInPool; tokensForLp = _totalTokens - tokensInPool; //initialize sqrtPrice and liquidity, used for price curve calcs sqrtPa = pp.sqrtPa; sqrtPb = pp.sqrtPb; liquidity = tokensInPool.mulDiv(pp.sqrtPa * pp.sqrtPb, pp.sqrtPb - pp.sqrtPa, Math.Rounding.Down); totalRaise = PandaMath.getTotalRaise(pp.sqrtPa, pp.sqrtPb, _tokensInPool); //initialize reserves and sqrtP _update(tokensInPool, 0, sqrtPa); minTradeSize = pandaFactory.minTradeSize(baseToken); deployer = _deployer; vestingPeriod = pp.vestingPeriod; initialized = true; _afterInitializePool(data); emit PoolInitialized( _pandaToken, pp.baseToken, pp.sqrtPa, pp.sqrtPb, pp.vestingPeriod, _deployer, data ); } //***********************IMPLEMENTATION DETAILS*********************************** function VERSION() external virtual pure returns (string memory); //Hooks to implement custom logic function _beforeInitializePool(bytes calldata data) internal virtual {} function _afterInitializePool(bytes calldata data) internal virtual {} //flag to note if the pool is for a pandaToken that's also being deployed. Default true, override if not //This means that by default, the PandaFactory will use defaults associated with pandaToken pools function isPandaToken() external view virtual returns (bool) { return true; } //flag to note when incentives can be claimed. Default is if pool has graduated function canClaimIncentive() external view virtual returns (bool) { return graduated; } //Calculate tokens to be sold in the pool (vs tokens for LP) //Default logic calculated here, see notes in PandaMath library //Can be overriden for more advanced logic that's based on how moveLiquidity works function getTokensInPool(uint256 _sqrtPa, uint256 _sqrtPb, uint256 _totalTokens, uint16 _graduationFee) public view virtual returns (uint256) { return PandaMath.getTokensInPool(_sqrtPa, _sqrtPb, _totalTokens, _graduationFee); } //Helper function to determine total raise using only deployment parameters function getTotalRaise(uint256 _sqrtPa, uint256 _sqrtPb, uint256 _tokensInPool) public view virtual returns (uint256) { return PandaMath.getTotalRaise(_sqrtPa, _sqrtPb, _tokensInPool); } //Normally, moveLiquidity will auto-trigger if buyTokens flips over the graduation threshold //This is an external function than can be called by anyone (e.g. bots) to trigger graduation function moveLiquidity() external virtual nonReentrant { require(!graduated, "PandaPool: GRADUATED"); require(pandaReserve <= tokensInPool * GRADUATION_THRESHOLD / PandaMath.FEE_SCALE, "PandaPool: POOL_NOT_EMPTY"); _moveLiquidity(); } //Implement custom logic in implementation function _moveLiquidity() internal virtual {} //***********************MODIFIERS*********************************************** modifier notGraduated() { require(!graduated, "PandaPool: GRADUATED"); _; } modifier onlyBeraPair() { require(wbera == baseToken, "PandaPool: NOT_BERA_PAIR"); _; } //***********************POOL STATE*********************************************** function getCurrentPrice() public view returns (uint256) { return sqrtP*sqrtP; } //Update pool state (reserves and sqrtP) function _update(uint256 _pandaReserve, uint256 _baseReserve, uint256 _sqrtP) internal { //Update reserves sqrtP = _sqrtP; pandaReserve = _pandaReserve; baseReserve = _baseReserve; require(pandaReserve <= IERC20(pandaToken).balanceOf(address(this)) - tokensForLp && baseReserve <= IERC20(baseToken).balanceOf(address(this)), "PandaPool: RESERVE_OVERFLOW"); emit Sync(pandaReserve, baseReserve, sqrtP); } //***********************SWAP FUNCTIONS******************************************* function buyTokensWithBera(uint256 minAmountOut, address to) external payable onlyBeraPair nonReentrant returns (uint256 amountOut, uint256 fee) { IWETH(baseToken).deposit{value: msg.value}(); return _buyTokens(msg.value, minAmountOut, address(this), to); } function buyTokens(uint256 amountIn, uint256 minAmountOut, address to) external nonReentrant returns (uint256 amountOut, uint256 fee) { return _buyTokens(amountIn, minAmountOut, msg.sender, to); } //"to" must be the end-user to properly increment their tokenBoughtInPool balance //This method allows external contracts (routers, bots) to call with "from" and "to" as the end-user //Otherwise, it can allow others to swap on behalf of the end-user without authorization (if they gave approval) function buyTokens(uint256 amountIn, uint256 minAmountOut, address from, address to) external nonReentrant returns (uint256 amountOut, uint256 fee) { require(msg.sender == from || (msg.sender != from && from == tx.origin && to == tx.origin), "PandaPool: INVALID_FROM_TO"); return _buyTokens(amountIn, minAmountOut, from, to); } function buyAllTokens(address to) external nonReentrant returns (uint256 amountOut, uint256 fee) { uint256 minAmountOut = pandaReserve*9900/10000; return _buyTokens(getAmountInBuyRemainingTokens(), minAmountOut, msg.sender, to); } function _buyTokens(uint256 amountIn, uint256 minAmountOut, address from, address to) internal returns (uint256 amountOut, uint256 fee) { require(to != address(0), "PandaPool: INVALID_TO"); uint256 sqrtP_new; (amountOut, fee, sqrtP_new) = getAmountOutBuy(amountIn); require(amountOut >= minAmountOut, "PandaPool: INSUFFICIENT_OUTPUT_AMOUNT"); //Transfers if(from != address(this)) { TransferHelper.safeTransferFrom(baseToken, from, address(this), amountIn); } if(vestingPeriod == 0) { TransferHelper.safeTransfer(pandaToken, to, amountOut); } else { tokensBoughtInPool[to] += amountOut; //keep track of amount bought if vesting is on } TransferHelper.safeTransfer(baseToken, treasury, fee); //Update reserves uint256 baseReserve_new = baseReserve + amountIn - fee; uint256 pandaReserve_new = pandaReserve - amountOut; _update(pandaReserve_new, baseReserve_new, sqrtP_new); emit Swap(msg.sender, 0, amountIn, amountOut, 0, to); //Move liquidity if token reserve is depleted if(pandaReserve_new <= tokensInPool * GRADUATION_THRESHOLD / PandaMath.FEE_SCALE) { _moveLiquidity(); } } function sellTokensForBera(uint256 amountIn, uint256 minAmountOut, address to) external onlyBeraPair nonReentrant returns (uint256 amountOut, uint256 fee) { (amountOut, fee) = _sellTokens(amountIn, minAmountOut, msg.sender, address(this)); IWETH(baseToken).withdraw(amountOut); TransferHelper.safeTransferETH(to, amountOut); } function sellTokens(uint256 amountIn, uint256 minAmountOut, address to) external nonReentrant returns (uint256 amountOut, uint256 fee) { return _sellTokens(amountIn, minAmountOut, msg.sender, to); } //"from" must be the end-user to recognize their tokenBoughtInPool balance //This method allows external contracts (routers, bots) to call with "from" and "to" as the end-user //Otherwise, it can allow others to swap on behalf of the end-user without authorization function sellTokens(uint256 amountIn, uint256 minAmountOut, address from, address to) external nonReentrant returns (uint256 amountOut, uint256 fee) { require(msg.sender == from || (msg.sender != from && from == tx.origin && to == tx.origin), "PandaPool: INVALID_FROM_TO"); return _sellTokens(amountIn, minAmountOut, from, to); } function _sellTokens(uint256 amountIn, uint256 minAmountOut, address from, address to) internal returns (uint256 amountOut, uint256 fee) { require(to != address(0), "PandaPool: INVALID_TO"); uint256 sqrtP_new; (amountOut, fee, sqrtP_new) = getAmountOutSell(amountIn); require(amountOut >= minAmountOut, "PandaPool: INSUFFICIENT_OUTPUT_AMOUNT"); //Transfers if(vestingPeriod == 0) { TransferHelper.safeTransferFrom(pandaToken, from, address(this), amountIn); } else { //if vesting is on, we track balances with tokensBoughtInPool require(amountIn <= tokensBoughtInPool[from], "PandaPool: INSUFFICIENT_VESTED_BOUGHT"); tokensBoughtInPool[from] -= amountIn; } if(to != address(this)) { TransferHelper.safeTransfer(baseToken, to, amountOut); } TransferHelper.safeTransfer(baseToken, treasury, fee); //Update reserves uint256 baseReserve_new = baseReserve - amountOut - fee; uint256 pandaReserve_new = pandaReserve + amountIn; _update(pandaReserve_new, baseReserve_new, sqrtP_new); emit Swap(msg.sender, amountIn, 0, 0, amountOut, to); } //**************VIEW FUNCTIONS TO CALCULATE SWAP AMOUNTS************************** //Buy = swap baseToken for pandaToken //@param amountIn: how much baseToken user is swapping //@return amountOut: how much pandaToken they will get function getAmountOutBuy(uint256 amountIn) notGraduated public view returns (uint256 amountOut, uint256 fee, uint256 sqrtP_new) { require(amountIn + 1 gwei >= minTradeSize, "PandaPool: TRADE_BELOW_MIN"); require(amountIn <= getAmountInBuyRemainingTokens(), "PandaPool: INSUFFICIENT_LIQUIDITY"); fee = amountIn.mulDiv(poolFees.buyFee, PandaMath.FEE_SCALE, Math.Rounding.Up); uint256 deltaBaseReserve = amountIn - fee; uint256 baseReserve_new = baseReserve + deltaBaseReserve; sqrtP_new = sqrtPa + baseReserve_new.mulDiv(PandaMath.PRICE_SCALE, liquidity, Math.Rounding.Down); if(sqrtP_new > sqrtPb) sqrtP_new = sqrtPb; uint256 pandaReserve_new = liquidity.mulDiv(sqrtPb - sqrtP_new, sqrtP_new * sqrtPb, Math.Rounding.Up); amountOut = pandaReserve - pandaReserve_new; } //Sell = swap pandaToken for baseToken //@param amountIn: how much pandaToken user is swapping //@return amountOut: how much baseToken they will get function getAmountOutSell(uint256 amountIn) notGraduated public view returns (uint256 amountOut, uint256 fee, uint256 sqrtP_new) { uint256 pandaReserve_new = pandaReserve + amountIn; //panda reserve goes up sqrtP_new = liquidity.mulDiv(sqrtPb, (pandaReserve_new * sqrtPb + liquidity), Math.Rounding.Up); if(sqrtP_new < sqrtPa) sqrtP_new = sqrtPa; uint256 baseReserve_new = liquidity.mulDiv(sqrtP_new - sqrtPa, PandaMath.PRICE_SCALE, Math.Rounding.Up); require(baseReserve >= baseReserve_new, "PandaPool: INSUFFICIENT_LIQUIDITY"); uint256 deltaBaseReserve = baseReserve - baseReserve_new; require(deltaBaseReserve + 1 gwei >= minTradeSize, "PandaPool: TRADE_BELOW_MIN"); fee = deltaBaseReserve.mulDiv(poolFees.sellFee, PandaMath.FEE_SCALE, Math.Rounding.Up); amountOut = deltaBaseReserve-fee; } //Buy = swap baseToken for pandaToken //@param amountOut: how much pandaToken user wants //@return amountIn: how much baseToken they need to send function getAmountInBuy(uint256 amountOut) notGraduated public view returns (uint256 amountIn, uint256 fee, uint256 sqrtP_new) { require(amountOut <= pandaReserve, "PandaPool: INSUFFICIENT_LIQUIDITY"); uint256 pandaReserve_new = pandaReserve - amountOut; sqrtP_new = liquidity.mulDiv(sqrtPb, (pandaReserve_new * sqrtPb + liquidity), Math.Rounding.Up); if(sqrtP_new > sqrtPb) sqrtP_new = sqrtPb; uint256 baseReserve_new = liquidity.mulDiv(sqrtP_new - sqrtPa, PandaMath.PRICE_SCALE, Math.Rounding.Up); uint256 deltaBaseReserve = baseReserve_new - baseReserve; fee = deltaBaseReserve.mulDiv(poolFees.buyFee, PandaMath.FEE_SCALE -poolFees.buyFee, Math.Rounding.Up); amountIn = deltaBaseReserve + fee; require(amountIn + 1 gwei >= minTradeSize, "PandaPool: TRADE_BELOW_MIN"); } //Sell = swap pandaToken for baseToken //@param amountOut: how much baseToken user wants //@return amountIn: how much pandaToken they need to send function getAmountInSell(uint256 amountOut) notGraduated public view returns (uint256 amountIn, uint256 fee, uint256 sqrtP_new) { fee = amountOut.mulDiv(poolFees.sellFee, PandaMath.FEE_SCALE -poolFees.sellFee, Math.Rounding.Up); uint256 deltaBaseReserve = amountOut + fee; require(deltaBaseReserve + 1 gwei >= minTradeSize, "PandaPool: TRADE_BELOW_MIN"); require(deltaBaseReserve <= baseReserve, "PandaPool: INSUFFICIENT_LIQUIDITY"); uint256 baseReserve_new = baseReserve - deltaBaseReserve; sqrtP_new = sqrtPa + baseReserve_new.mulDiv(PandaMath.PRICE_SCALE, liquidity, Math.Rounding.Down); if(sqrtP_new < sqrtPa) sqrtP_new = sqrtPa; uint256 pandaReserve_new = liquidity.mulDiv(sqrtPb - sqrtP_new, sqrtP_new * sqrtPb, Math.Rounding.Up); amountIn = pandaReserve_new - pandaReserve; } //Get remaining tokens in pool = pandaReserve function remainingTokensInPool() public view returns (uint256) { return pandaReserve; } //(Independently calculated) amountIn to buy all remaining tokens in the pool function getAmountInBuyRemainingTokens() public view returns (uint256 amountIn) { uint256 baseNeeded = totalRaise - baseReserve; amountIn = baseNeeded.mulDiv(PandaMath.FEE_SCALE + poolFees.buyFee, PandaMath.FEE_SCALE, Math.Rounding.Up); } function getTotalRaise() public view returns (uint256) { require(initialized, "PandaPool: NOT_INITIALIZED"); return PandaMath.getTotalRaise(sqrtPa, sqrtPb, tokensInPool); } //******************************************************************************** //Get claimable tokens after graduation, when vesting is on. //When vesting is off, tokens are transferred directly to the user //Function can possibly overriden with more advanced vesting logic function claimableTokens(address user) public view virtual returns (uint256) { require(vestingPeriod != 0, "PandaPool: VESTING_OFF"); require(graduated, "PandaPool: NOT_GRADUATED"); uint256 totalBought = tokensBoughtInPool[user]; uint256 timeElapsed = block.timestamp - graduationTime; uint256 available; if(timeElapsed >= vestingPeriod) { available = totalBought; } else { available = totalBought * timeElapsed / vestingPeriod; } return available - tokensClaimed[user]; } //When vesting is off, tokens are transferred directly to the user //Claim vested tokens, only valid when vesting is on. function claimTokens(address user) external nonReentrant returns (uint256) { require(vestingPeriod != 0, "PandaPool: VESTING_OFF"); uint256 claimable = claimableTokens(user); require(claimable > 0, "PandaPool: NO_CLAIMABLE"); tokensClaimed[user] += claimable; TransferHelper.safeTransfer(pandaToken, user, claimable); emit TokensClaimed(user, claimable); return claimable; } //View balance excess of reserves, if any (shouldn't be unless donated to the contract) function viewExcessTokens() public view returns (uint256 excessPandaTokens, uint256 excessBaseTokens) { excessPandaTokens = IERC20(pandaToken).balanceOf(address(this)) - pandaReserve - tokensForLp; excessBaseTokens = IERC20(baseToken).balanceOf(address(this)) - baseReserve; } //Skim excess to treasury. Anyone can call function collectExcessTokens() external nonReentrant { (uint256 excessPandaTokens, uint256 excessBaseTokens) = viewExcessTokens(); TransferHelper.safeTransfer(pandaToken, treasury, excessPandaTokens); TransferHelper.safeTransfer(baseToken, treasury, excessBaseTokens); emit ExcessCollected(excessPandaTokens, excessBaseTokens); } //Total balance including unvested tokens (front-end friendly) function totalBalanceOf(address user) external view returns (uint256) { if(vestingPeriod == 0) { return IERC20(pandaToken).balanceOf(user); } else { return IERC20(pandaToken).balanceOf(user) + tokensBoughtInPool[user] - tokensClaimed[user]; } } //Claimable / vested balance (front-end friendly) function vestedBalanceOf(address user) external view returns (uint256) { if(vestingPeriod == 0) { return IERC20(pandaToken).balanceOf(user); } else { return IERC20(pandaToken).balanceOf(user) + claimableTokens(user); } } //Fallback function to handle sellTokensToBera receive() external payable { require(wbera == baseToken && msg.sender == wbera, "PandaPool: NOT_BERA_PAIR"); } event PoolInitialized(address pandaToken, address baseToken, uint256 sqrtPa, uint256 sqrtPb, uint256 vestingPeriod, address deployer, bytes data); event Swap(address indexed sender, uint amount0In, uint amount1In, uint amount0Out, uint amount1Out, address indexed to); event Sync(uint256 pandaReserve, uint256 baseReserve, uint256 sqrtPrice); event ExcessCollected(uint256 excessPandaTokens, uint256 excessBaseTokens); event LiquidityMoved(uint256 amountPanda, uint256 amountBase); event TokensClaimed(address indexed user, uint256 amount); }
// SPDX-License-Identifier: UNLICENSED pragma solidity =0.8.19; import {Math} from "@openzeppelin/contracts/utils/math/Math.sol"; library PandaMath { using Math for uint256; uint256 internal constant PRICE_SCALE = 1e36; uint256 internal constant FEE_SCALE = 10000; uint256 internal constant MAX_FEE = 1000; uint256 internal constant MAX_DEPLOYER_FEE_SHARE = 1000; //Helper function to get the sqrtP of the token, given scaledPrice = baseAmount * PRICE_SCALE / pandaAmount ///@param scaledPrice: price of the token specified as baseToken per 1e36 (PRICE_SCALE) pandaToken ///@dev For example, to get sqrtP associated with a price of 0.00001, pass in 0.00001 * 1e18 here function getSqrtP(uint256 scaledPrice) internal pure returns (uint256) { return Math.sqrt(scaledPrice); } //Get tokens in pool //Calculated deterministically based on: //totalAmountRaised / tokensForLp (i.e. the price when we move to the dex) == sqrtPb **2 (i.e. the ending price) //Calculated: //uint raiseAmount = tokensInPool*sqrtPa*sqrtPb/PRICE_SCALE; //uint raiseAmountWithFee = raiseAmount - raiseAmount * graduationFee / FEE_SCALE; //uint dexPrice = raiseAmountWithFee * PRICE_SCALE / (totalTokens - tokensInPool); //Solve for tokensInPool such that dexPrice == sqrtPb**2; function getTokensInPool(uint256 sqrtPa, uint256 sqrtPb, uint256 totalTokens, uint16 graduationFee) internal pure returns (uint256) { uint256 denom = sqrtPa + sqrtPb - sqrtPa * graduationFee / FEE_SCALE; return totalTokens.mulDiv(sqrtPb, denom, Math.Rounding.Up); } //Helper function to get the total amount of base tokens needed to graduate the pool, given pool parameters function getTotalRaise(uint256 sqrtPa, uint256 sqrtPb, uint256 tokensInPool) internal pure returns (uint256) { return tokensInPool.mulDiv(sqrtPa * sqrtPb, PRICE_SCALE, Math.Rounding.Up); } //Calculate the V2 dex pair address for the token, based on the information in the factory function getDexPair(address pandaToken, address baseToken, address v2Factory, bytes32 initCodeHash) internal pure returns (address pair) { require(baseToken != pandaToken, 'PandaFactory: IDENTICAL_ADDRESSES'); require(baseToken != address(0) && pandaToken != address(0), 'PandaFactory: ZERO_ADDRESS'); (address token0, address token1) = baseToken < pandaToken ? (baseToken, pandaToken) : (pandaToken, baseToken); pair = address(uint160(uint(keccak256(abi.encodePacked( hex'ff', v2Factory, keccak256(abi.encodePacked(token0, token1)), initCodeHash ))))); } //MATH for PandaPool.sol //TODO: migrate it here with helper functions //In general, we follow UniV3 style math //LIQUIDITY: //Source: https://atiselsts.github.io/pdfs/uniswap-v3-liquidity-math.pdf //See Page 2, Equation (5): case where P <= Pa (i.e. Price = startingPrice, as is the case when pool is started) // L = x * (sqrt(Pa) - sqrt(Pb)) / (sqrt(Pb) - sqrt(Pa)) // In our case, x = tokensForLp, sqrt(Pa) = sqrtPa, sqrt(Pb) = sqrtPb // L = tokensForLp * (sqrtPa - sqrtPb) / (sqrtPb - sqrtPa) // In solidity: liquidity = tokensInPool.mulDiv(sqrtPa * sqrtPb, sqrtPb - sqrtPa, Math.Rounding.Down); // Rounding up vs down doesn't matter here, chosen down to be explicit. // This is a constant and calculated once upon initialization. // Now we can deterministically calculate: // - Given PandaReserve: corresponding baseReserve, and price (sqrtP) // - Given BaseReserve: corresponding pandaReserve, and price (sqrtP) // PandaPool also follows the following property: // The average price paid to buy all the tokens in a PandaPool = GEOMEAN(Pa, Pb) = sqrtPa * sqrtPb //CALCULATING NEW PRICE: //Given pandaReserve_new //sqrtP_new = liquidity * sqrtPb / (pandaReserve_new * sqrtPb + liquidity) //Derivation: //Source: https://atiselsts.github.io/pdfs/uniswap-v3-liquidity-math.pdf. //Start with Page 3, Equation 11: //x = L * (sqrtPb - sqrtP) / (sqrtP * sqrtPb) //x * sqrtPb * sqrtP = L * sqrtPb - L * sqrtP //x * sqrtPb * sqrtP + L * sqrtP = L * sqrtPb //sqrtP * (x * sqrtPb + L) = L * sqrtPb //sqrtP = L * sqrtPb / (x * sqrtPb + L) //Given baseReserve_new //sqrtP_new = sqrtPa + baseReserve_new * PRICE_SCALE / liquidity //Derivation: //Source: https://atiselsts.github.io/pdfs/uniswap-v3-liquidity-math.pdf. //Start with Page 3, Equation 12: //y = L * (sqrtP - sqrtPa) //y = L*sqrtP - L*sqrtPa //y + L*sqrtPa = L*sqrtP //sqrtP = (y + L*sqrtPa) / L //sqrtP = y/L + sqrtPa //Note: we need to adjust by the PRICE_SCALE //ROUNDING: //In general we use OZ muldiv to avoid risk of overflow //When we calculate new price, round up when buying, round down when selling //When we calculate new reserves, always round up (in favor of the liquidity pool) }
// SPDX-License-Identifier: UNLICENSED pragma solidity =0.8.19; interface IV2Pair { event Approval(address indexed owner, address indexed spender, uint value); event Transfer(address indexed from, address indexed to, uint value); function name() external pure returns (string memory); function symbol() external pure returns (string memory); function decimals() external pure returns (uint8); function totalSupply() external view returns (uint); function balanceOf(address owner) external view returns (uint); function allowance(address owner, address spender) external view returns (uint); function approve(address spender, uint value) external returns (bool); function transfer(address to, uint value) external returns (bool); function transferFrom(address from, address to, uint value) external returns (bool); function DOMAIN_SEPARATOR() external view returns (bytes32); function PERMIT_TYPEHASH() external pure returns (bytes32); function nonces(address owner) external view returns (uint); function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external; event Mint(address indexed sender, uint amount0, uint amount1); event Burn(address indexed sender, uint amount0, uint amount1, address indexed to); event Swap( address indexed sender, uint amount0In, uint amount1In, uint amount0Out, uint amount1Out, address indexed to ); event Sync(uint112 reserve0, uint112 reserve1); function MINIMUM_LIQUIDITY() external pure returns (uint); function factory() external view returns (address); function token0() external view returns (address); function token1() external view returns (address); function getReserves() external view returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast); function price0CumulativeLast() external view returns (uint); function price1CumulativeLast() external view returns (uint); function kLast() external view returns (uint); function mint(address to) external returns (uint liquidity); function burn(address to) external returns (uint amount0, uint amount1); function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external; function skim(address to) external; function sync() external; function initialize(address, address) external; }
// SPDX-License-Identifier: UNLICENSED pragma solidity =0.8.19; interface IV2Factory { function feeTo() external view returns (address); function feeToSetter() external view returns (address); function getPair(address tokenA, address tokenB) external view returns (address pair); function allPairs(uint) external view returns (address pair); function allPairsLength() external view returns (uint); function createPair(address tokenA, address tokenB) external returns (address pair); function setFeeTo(address) external; function setFeeToSetter(address) external; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.4) (token/ERC20/extensions/IERC20Permit.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. * * ==== Security Considerations * * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be * considered as an intention to spend the allowance in any specific way. The second is that because permits have * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be * generally recommended is: * * ```solidity * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public { * try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {} * doThing(..., value); * } * * function doThing(..., uint256 value) public { * token.safeTransferFrom(msg.sender, address(this), value); * ... * } * ``` * * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also * {SafeERC20-safeTransferFrom}). * * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so * contracts should have entry points that don't rely on permit. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. * * CAUTION: See Security Considerations above. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/ERC20.sol) pragma solidity ^0.8.0; import "./IERC20.sol"; import "./extensions/IERC20Metadata.sol"; import "../../utils/Context.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * The default value of {decimals} is 18. To change this, you should override * this function so it returns a different value. * * We have followed general OpenZeppelin Contracts guidelines: functions revert * instead returning `false` on failure. This behavior is nonetheless * conventional and does not conflict with the expectations of ERC20 * applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */ contract ERC20 is Context, IERC20, IERC20Metadata { mapping(address => uint256) private _balances; mapping(address => mapping(address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; /** * @dev Sets the values for {name} and {symbol}. * * All two of these values are immutable: they can only be set once during * construction. */ constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; } /** * @dev Returns the name of the token. */ function name() public view virtual override returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view virtual override returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5.05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the default value returned by this function, unless * it's overridden. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view virtual override returns (uint8) { return 18; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view virtual override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view virtual override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `to` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address to, uint256 amount) public virtual override returns (bool) { address owner = _msgSender(); _transfer(owner, to, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on * `transferFrom`. This is semantically equivalent to an infinite approval. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { address owner = _msgSender(); _approve(owner, spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}. * * NOTE: Does not update the allowance if the current allowance * is the maximum `uint256`. * * Requirements: * * - `from` and `to` cannot be the zero address. * - `from` must have a balance of at least `amount`. * - the caller must have allowance for ``from``'s tokens of at least * `amount`. */ function transferFrom(address from, address to, uint256 amount) public virtual override returns (bool) { address spender = _msgSender(); _spendAllowance(from, spender, amount); _transfer(from, to, amount); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { address owner = _msgSender(); _approve(owner, spender, allowance(owner, spender) + addedValue); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { address owner = _msgSender(); uint256 currentAllowance = allowance(owner, spender); require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero"); unchecked { _approve(owner, spender, currentAllowance - subtractedValue); } return true; } /** * @dev Moves `amount` of tokens from `from` to `to`. * * This internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `from` must have a balance of at least `amount`. */ function _transfer(address from, address to, uint256 amount) internal virtual { require(from != address(0), "ERC20: transfer from the zero address"); require(to != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(from, to, amount); uint256 fromBalance = _balances[from]; require(fromBalance >= amount, "ERC20: transfer amount exceeds balance"); unchecked { _balances[from] = fromBalance - amount; // Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by // decrementing then incrementing. _balances[to] += amount; } emit Transfer(from, to, amount); _afterTokenTransfer(from, to, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: mint to the zero address"); _beforeTokenTransfer(address(0), account, amount); _totalSupply += amount; unchecked { // Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above. _balances[account] += amount; } emit Transfer(address(0), account, amount); _afterTokenTransfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); uint256 accountBalance = _balances[account]; require(accountBalance >= amount, "ERC20: burn amount exceeds balance"); unchecked { _balances[account] = accountBalance - amount; // Overflow not possible: amount <= accountBalance <= totalSupply. _totalSupply -= amount; } emit Transfer(account, address(0), amount); _afterTokenTransfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve(address owner, address spender, uint256 amount) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Updates `owner` s allowance for `spender` based on spent `amount`. * * Does not update the allowance amount in case of infinite allowance. * Revert if not enough allowance is available. * * Might emit an {Approval} event. */ function _spendAllowance(address owner, address spender, uint256 amount) internal virtual { uint256 currentAllowance = allowance(owner, spender); if (currentAllowance != type(uint256).max) { require(currentAllowance >= amount, "ERC20: insufficient allowance"); unchecked { _approve(owner, spender, currentAllowance - amount); } } } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual {} /** * @dev Hook that is called after any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * has been transferred to `to`. * - when `from` is zero, `amount` tokens have been minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens have been burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _afterTokenTransfer(address from, address to, uint256 amount) internal virtual {} }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol) pragma solidity ^0.8.0; import "../Strings.sol"; /** * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations. * * These functions can be used to verify that a message was signed by the holder * of the private keys of a given address. */ library ECDSA { enum RecoverError { NoError, InvalidSignature, InvalidSignatureLength, InvalidSignatureS, InvalidSignatureV // Deprecated in v4.8 } function _throwError(RecoverError error) private pure { if (error == RecoverError.NoError) { return; // no error: do nothing } else if (error == RecoverError.InvalidSignature) { revert("ECDSA: invalid signature"); } else if (error == RecoverError.InvalidSignatureLength) { revert("ECDSA: invalid signature length"); } else if (error == RecoverError.InvalidSignatureS) { revert("ECDSA: invalid signature 's' value"); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature` or error string. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. * * Documentation for signature generation: * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js] * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers] * * _Available since v4.3._ */ function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) { if (signature.length == 65) { bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. /// @solidity memory-safe-assembly assembly { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return tryRecover(hash, v, r, s); } else { return (address(0), RecoverError.InvalidSignatureLength); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature`. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. */ function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, signature); _throwError(error); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately. * * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures] * * _Available since v4.3._ */ function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) { bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff); uint8 v = uint8((uint256(vs) >> 255) + 27); return tryRecover(hash, v, r, s); } /** * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately. * * _Available since v4.2._ */ function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, r, vs); _throwError(error); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `v`, * `r` and `s` signature fields separately. * * _Available since v4.3._ */ function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) { // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) { return (address(0), RecoverError.InvalidSignatureS); } // If the signature is valid (and not malleable), return the signer address address signer = ecrecover(hash, v, r, s); if (signer == address(0)) { return (address(0), RecoverError.InvalidSignature); } return (signer, RecoverError.NoError); } /** * @dev Overload of {ECDSA-recover} that receives the `v`, * `r` and `s` signature fields separately. */ function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, v, r, s); _throwError(error); return recovered; } /** * @dev Returns an Ethereum Signed Message, created from a `hash`. This * produces hash corresponding to the one signed with the * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] * JSON-RPC method as part of EIP-191. * * See {recover}. */ function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) { // 32 is the length in bytes of hash, // enforced by the type signature above /// @solidity memory-safe-assembly assembly { mstore(0x00, "\x19Ethereum Signed Message:\n32") mstore(0x1c, hash) message := keccak256(0x00, 0x3c) } } /** * @dev Returns an Ethereum Signed Message, created from `s`. This * produces hash corresponding to the one signed with the * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] * JSON-RPC method as part of EIP-191. * * See {recover}. */ function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s)); } /** * @dev Returns an Ethereum Signed Typed Data, created from a * `domainSeparator` and a `structHash`. This produces hash corresponding * to the one signed with the * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] * JSON-RPC method as part of EIP-712. * * See {recover}. */ function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) { /// @solidity memory-safe-assembly assembly { let ptr := mload(0x40) mstore(ptr, "\x19\x01") mstore(add(ptr, 0x02), domainSeparator) mstore(add(ptr, 0x22), structHash) data := keccak256(ptr, 0x42) } } /** * @dev Returns an Ethereum Signed Data with intended validator, created from a * `validator` and `data` according to the version 0 of EIP-191. * * See {recover}. */ function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\x19\x00", validator, data)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/EIP712.sol) pragma solidity ^0.8.8; import "./ECDSA.sol"; import "../ShortStrings.sol"; import "../../interfaces/IERC5267.sol"; /** * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data. * * The encoding specified in the EIP is very generic, and such a generic implementation in Solidity is not feasible, * thus this contract does not implement the encoding itself. Protocols need to implement the type-specific encoding * they need in their contracts using a combination of `abi.encode` and `keccak256`. * * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA * ({_hashTypedDataV4}). * * The implementation of the domain separator was designed to be as efficient as possible while still properly updating * the chain id to protect against replay attacks on an eventual fork of the chain. * * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask]. * * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain * separator of the implementation contract. This will cause the `_domainSeparatorV4` function to always rebuild the * separator from the immutable values, which is cheaper than accessing a cached version in cold storage. * * _Available since v3.4._ * * @custom:oz-upgrades-unsafe-allow state-variable-immutable state-variable-assignment */ abstract contract EIP712 is IERC5267 { using ShortStrings for *; bytes32 private constant _TYPE_HASH = keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"); // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to // invalidate the cached domain separator if the chain id changes. bytes32 private immutable _cachedDomainSeparator; uint256 private immutable _cachedChainId; address private immutable _cachedThis; bytes32 private immutable _hashedName; bytes32 private immutable _hashedVersion; ShortString private immutable _name; ShortString private immutable _version; string private _nameFallback; string private _versionFallback; /** * @dev Initializes the domain separator and parameter caches. * * The meaning of `name` and `version` is specified in * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]: * * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol. * - `version`: the current major version of the signing domain. * * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart * contract upgrade]. */ constructor(string memory name, string memory version) { _name = name.toShortStringWithFallback(_nameFallback); _version = version.toShortStringWithFallback(_versionFallback); _hashedName = keccak256(bytes(name)); _hashedVersion = keccak256(bytes(version)); _cachedChainId = block.chainid; _cachedDomainSeparator = _buildDomainSeparator(); _cachedThis = address(this); } /** * @dev Returns the domain separator for the current chain. */ function _domainSeparatorV4() internal view returns (bytes32) { if (address(this) == _cachedThis && block.chainid == _cachedChainId) { return _cachedDomainSeparator; } else { return _buildDomainSeparator(); } } function _buildDomainSeparator() private view returns (bytes32) { return keccak256(abi.encode(_TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this))); } /** * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this * function returns the hash of the fully encoded EIP712 message for this domain. * * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example: * * ```solidity * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode( * keccak256("Mail(address to,string contents)"), * mailTo, * keccak256(bytes(mailContents)) * ))); * address signer = ECDSA.recover(digest, signature); * ``` */ function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) { return ECDSA.toTypedDataHash(_domainSeparatorV4(), structHash); } /** * @dev See {EIP-5267}. * * _Available since v4.9._ */ function eip712Domain() public view virtual override returns ( bytes1 fields, string memory name, string memory version, uint256 chainId, address verifyingContract, bytes32 salt, uint256[] memory extensions ) { return ( hex"0f", // 01111 _name.toStringWithFallback(_nameFallback), _version.toStringWithFallback(_versionFallback), block.chainid, address(this), bytes32(0), new uint256[](0) ); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Counters.sol) pragma solidity ^0.8.0; /** * @title Counters * @author Matt Condon (@shrugs) * @dev Provides counters that can only be incremented, decremented or reset. This can be used e.g. to track the number * of elements in a mapping, issuing ERC721 ids, or counting request ids. * * Include with `using Counters for Counters.Counter;` */ library Counters { struct Counter { // This variable should never be directly accessed by users of the library: interactions must be restricted to // the library's function. As of Solidity v0.5.2, this cannot be enforced, though there is a proposal to add // this feature: see https://github.com/ethereum/solidity/issues/4637 uint256 _value; // default: 0 } function current(Counter storage counter) internal view returns (uint256) { return counter._value; } function increment(Counter storage counter) internal { unchecked { counter._value += 1; } } function decrement(Counter storage counter) internal { uint256 value = counter._value; require(value > 0, "Counter: decrement overflow"); unchecked { counter._value = value - 1; } } function reset(Counter storage counter) internal { counter._value = 0; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol) pragma solidity ^0.8.0; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ abstract contract ReentrancyGuard { // Booleans are more expensive than uint256 or any type that takes up a full // word because each write operation emits an extra SLOAD to first read the // slot's contents, replace the bits taken up by the boolean, and then write // back. This is the compiler's defense against contract upgrades and // pointer aliasing, and it cannot be disabled. // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant _NOT_ENTERED = 1; uint256 private constant _ENTERED = 2; uint256 private _status; constructor() { _status = _NOT_ENTERED; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and making it call a * `private` function that does the actual work. */ modifier nonReentrant() { _nonReentrantBefore(); _; _nonReentrantAfter(); } function _nonReentrantBefore() private { // On the first call to nonReentrant, _status will be _NOT_ENTERED require(_status != _ENTERED, "ReentrancyGuard: reentrant call"); // Any calls to nonReentrant after this point will fail _status = _ENTERED; } function _nonReentrantAfter() private { // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _status = _NOT_ENTERED; } /** * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a * `nonReentrant` function in the call stack. */ function _reentrancyGuardEntered() internal view returns (bool) { return _status == _ENTERED; } }
// SPDX-License-Identifier: UNLICENSED pragma solidity =0.8.19; import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; interface IWETH is IERC20 { function deposit() external payable; function withdraw(uint wad) external; }
// SPDX-License-Identifier: UNLICENSED pragma solidity =0.8.19; import {IPandaStructs} from "./IPandaStructs.sol"; interface IPandaFactory is IPandaStructs { function treasury() external view returns (address); function wbera() external view returns (address); function minRaise(address) external view returns (uint256); function minTradeSize(address) external view returns (uint256); function MIN_TOKENSINPOOL_SHARE() external view returns (uint256); function MAX_TOKENSINPOOL_SHARE() external view returns (uint256); function MIN_SQRTP_MULTIPLE() external view returns (uint256); function MAX_SQRTP_MULTIPLE() external view returns (uint256); function TOKEN_SUPPLY() external view returns (uint256); function DEPLOYER_MAX_BPS() external view returns (uint16); function dexFactory() external view returns (address); function initCodeHash() external view returns (bytes32); function isImplementationAllowed(address _implementation) external view returns (bool); function allowedImplementations(uint256 index) external view returns (address); function incentiveToken() external view returns (address); function incentiveAmount() external view returns (uint256); function poolToIncentiveClaimed(address) external view returns (bool); function deployerNonce(address) external view returns (uint256); function allPools(uint256 index) external view returns (address); function poolToImplementation(address) external view returns (address); function deployPandaToken( address implementation, IPandaFactory.PandaPoolParams calldata pp, //baseToken, sqrtPa, sqrtPb, vestingPeriod string calldata name, string calldata symbol, uint16 deployerSupplyBps ) external returns (address); function deployPandaTokenWithBera( address implementation, IPandaFactory.PandaPoolParams calldata pp, //baseToken, sqrtPa, sqrtPb, vestingPeriod string calldata name, string calldata symbol, uint16 deployerSupplyBps ) external payable returns (address); function deployPandaPool( address implementation, IPandaFactory.PandaPoolParams calldata pp, //baseToken, sqrtPa, sqrtPb, vestingPeriod uint256 totalTokens, address pandaToken, bytes calldata data ) external returns (address); function claimIncentive(address _pandaPool) external; function predictPoolAddress(address _implementation, address _deployer) external view returns (address); function getSqrtP(uint256 scaledPrice) external view returns (uint256); function getPoolFees() external view returns (PandaFees memory); function isLegitPool(address _pandaPool) external view returns (bool); function allPoolsLength() external view returns (uint256); function allowedImplementationsLength() external view returns (uint256); function setMinRaise(address _token, uint256 _minRaise) external; function setMinTradeSize(address _token, uint256 _minTradeSize) external; function setTreasury(address _treasury) external; function setPandaPoolFees(uint16 _buyFee, uint16 _sellFee, uint16 _graduationFee, uint16 _deployerFeeShare) external; function setDexFactory(address _dexFactory, bytes32 _initCodeHash) external; function setAllowedImplementation(address _implementation, bool _allowed) external; function setWbera(address _wbera) external; function setIncentive(address _incentiveToken, uint256 _incentiveAmount) external; }
// SPDX-License-Identifier: UNLICENSED pragma solidity =0.8.19; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; /// @title TransferHelper /// @notice Contains helper methods for interacting with ERC20 tokens that do not consistently return true/false /// @dev Forked from Uniswap solidity-lib + added condition to skip 0 value transfers library TransferHelper { function safeApprove( address token, address to, uint256 value ) internal { (bool success, bytes memory data) = token.call(abi.encodeWithSelector(IERC20.approve.selector, to, value)); require( success && (data.length == 0 || abi.decode(data, (bool))), 'TransferHelper::safeApprove: approve failed' ); } function safeTransfer( address token, address to, uint256 value ) internal { if (value == 0) return; (bool success, bytes memory data) = token.call(abi.encodeWithSelector(IERC20.transfer.selector, to, value)); require( success && (data.length == 0 || abi.decode(data, (bool))), 'TransferHelper::safeTransfer: transfer failed' ); } function safeTransferFrom( address token, address from, address to, uint256 value ) internal { if (value == 0) return; (bool success, bytes memory data) = token.call(abi.encodeWithSelector(IERC20.transferFrom.selector, from, to, value)); require( success && (data.length == 0 || abi.decode(data, (bool))), 'TransferHelper::transferFrom: transferFrom failed' ); } function safeTransferETH(address to, uint256 value) internal { if (value == 0) return; (bool success, ) = to.call{value: value}(new bytes(0)); require(success, 'TransferHelper::safeTransferETH: ETH transfer failed'); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 amount) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; /** * @dev Interface for the optional metadata functions from the ERC20 standard. * * _Available since v4.1._ */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.4) (utils/Context.sol) pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } function _contextSuffixLength() internal view virtual returns (uint256) { return 0; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol) pragma solidity ^0.8.0; import "./math/Math.sol"; import "./math/SignedMath.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant _SYMBOLS = "0123456789abcdef"; uint8 private constant _ADDRESS_LENGTH = 20; /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; /// @solidity memory-safe-assembly assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; /// @solidity memory-safe-assembly assembly { mstore8(ptr, byte(mod(value, 10), _SYMBOLS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toString(int256 value) internal pure returns (string memory) { return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value)))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = _SYMBOLS[value & 0xf]; value >>= 4; } require(value == 0, "Strings: hex length insufficient"); return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return keccak256(bytes(a)) == keccak256(bytes(b)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/ShortStrings.sol) pragma solidity ^0.8.8; import "./StorageSlot.sol"; // | string | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA | // | length | 0x BB | type ShortString is bytes32; /** * @dev This library provides functions to convert short memory strings * into a `ShortString` type that can be used as an immutable variable. * * Strings of arbitrary length can be optimized using this library if * they are short enough (up to 31 bytes) by packing them with their * length (1 byte) in a single EVM word (32 bytes). Additionally, a * fallback mechanism can be used for every other case. * * Usage example: * * ```solidity * contract Named { * using ShortStrings for *; * * ShortString private immutable _name; * string private _nameFallback; * * constructor(string memory contractName) { * _name = contractName.toShortStringWithFallback(_nameFallback); * } * * function name() external view returns (string memory) { * return _name.toStringWithFallback(_nameFallback); * } * } * ``` */ library ShortStrings { // Used as an identifier for strings longer than 31 bytes. bytes32 private constant _FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF; error StringTooLong(string str); error InvalidShortString(); /** * @dev Encode a string of at most 31 chars into a `ShortString`. * * This will trigger a `StringTooLong` error is the input string is too long. */ function toShortString(string memory str) internal pure returns (ShortString) { bytes memory bstr = bytes(str); if (bstr.length > 31) { revert StringTooLong(str); } return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length)); } /** * @dev Decode a `ShortString` back to a "normal" string. */ function toString(ShortString sstr) internal pure returns (string memory) { uint256 len = byteLength(sstr); // using `new string(len)` would work locally but is not memory safe. string memory str = new string(32); /// @solidity memory-safe-assembly assembly { mstore(str, len) mstore(add(str, 0x20), sstr) } return str; } /** * @dev Return the length of a `ShortString`. */ function byteLength(ShortString sstr) internal pure returns (uint256) { uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF; if (result > 31) { revert InvalidShortString(); } return result; } /** * @dev Encode a string into a `ShortString`, or write it to storage if it is too long. */ function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) { if (bytes(value).length < 32) { return toShortString(value); } else { StorageSlot.getStringSlot(store).value = value; return ShortString.wrap(_FALLBACK_SENTINEL); } } /** * @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}. */ function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) { if (ShortString.unwrap(value) != _FALLBACK_SENTINEL) { return toString(value); } else { return store; } } /** * @dev Return the length of a string that was encoded to `ShortString` or written to storage using {setWithFallback}. * * WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of * actual characters as the UTF-8 encoding of a single character can span over multiple bytes. */ function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) { if (ShortString.unwrap(value) != _FALLBACK_SENTINEL) { return byteLength(value); } else { return bytes(store).length; } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (interfaces/IERC5267.sol) pragma solidity ^0.8.0; interface IERC5267 { /** * @dev MAY be emitted to signal that the domain could have changed. */ event EIP712DomainChanged(); /** * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712 * signature. */ function eip712Domain() external view returns ( bytes1 fields, string memory name, string memory version, uint256 chainId, address verifyingContract, bytes32 salt, uint256[] memory extensions ); }
// SPDX-License-Identifier: UNLICENSED pragma solidity =0.8.19; interface IPandaStructs { struct PandaFees { uint16 buyFee; uint16 sellFee; uint16 graduationFee; uint16 deployerFeeShare; } struct PandaPoolParams { address baseToken; uint256 sqrtPa; uint256 sqrtPb; uint256 vestingPeriod; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.0; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return a > b ? a : b; } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return a < b ? a : b; } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // must be unchecked in order to support `n = type(int256).min` return uint256(n >= 0 ? n : -n); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/StorageSlot.sol) // This file was procedurally generated from scripts/generate/templates/StorageSlot.js. pragma solidity ^0.8.0; /** * @dev Library for reading and writing primitive types to specific storage slots. * * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts. * This library helps with reading and writing to such slots without the need for inline assembly. * * The functions in this library return Slot structs that contain a `value` member that can be used to read or write. * * Example usage to set ERC1967 implementation slot: * ```solidity * contract ERC1967 { * bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; * * function _getImplementation() internal view returns (address) { * return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value; * } * * function _setImplementation(address newImplementation) internal { * require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract"); * StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; * } * } * ``` * * _Available since v4.1 for `address`, `bool`, `bytes32`, `uint256`._ * _Available since v4.9 for `string`, `bytes`._ */ library StorageSlot { struct AddressSlot { address value; } struct BooleanSlot { bool value; } struct Bytes32Slot { bytes32 value; } struct Uint256Slot { uint256 value; } struct StringSlot { string value; } struct BytesSlot { bytes value; } /** * @dev Returns an `AddressSlot` with member `value` located at `slot`. */ function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `BooleanSlot` with member `value` located at `slot`. */ function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `Bytes32Slot` with member `value` located at `slot`. */ function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `Uint256Slot` with member `value` located at `slot`. */ function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `StringSlot` with member `value` located at `slot`. */ function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `StringSlot` representation of the string storage pointer `store`. */ function getStringSlot(string storage store) internal pure returns (StringSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := store.slot } } /** * @dev Returns an `BytesSlot` with member `value` located at `slot`. */ function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`. */ function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := store.slot } } }
{ "remappings": [ "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/", "ds-test/=lib/forge-std/lib/ds-test/src/", "erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/", "forge-std/=lib/forge-std/src/", "openzeppelin-contracts/=lib/openzeppelin-contracts/", "openzeppelin/=lib/openzeppelin-contracts/contracts/", "solady/=lib/solady/src/" ], "optimizer": { "enabled": true, "runs": 200 }, "metadata": { "useLiteralContent": false, "bytecodeHash": "ipfs", "appendCBOR": true }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "evmVersion": "paris", "viaIR": false, "libraries": {} }
Contract ABI
API[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"InvalidShortString","type":"error"},{"inputs":[{"internalType":"string","name":"str","type":"string"}],"name":"StringTooLong","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[],"name":"EIP712DomainChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"excessPandaTokens","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"excessBaseTokens","type":"uint256"}],"name":"ExcessCollected","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"amountPanda","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amountBase","type":"uint256"}],"name":"LiquidityMoved","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"pandaToken","type":"address"},{"indexed":false,"internalType":"address","name":"baseToken","type":"address"},{"indexed":false,"internalType":"uint256","name":"sqrtPa","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"sqrtPb","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"vestingPeriod","type":"uint256"},{"indexed":false,"internalType":"address","name":"deployer","type":"address"},{"indexed":false,"internalType":"bytes","name":"data","type":"bytes"}],"name":"PoolInitialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount0In","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount1In","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount0Out","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount1Out","type":"uint256"},{"indexed":true,"internalType":"address","name":"to","type":"address"}],"name":"Swap","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"pandaReserve","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"baseReserve","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"sqrtPrice","type":"uint256"}],"name":"Sync","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"TokensClaimed","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[],"name":"DOMAIN_SEPARATOR","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"GRADUATION_THRESHOLD","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"VERSION","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"baseReserve","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"baseToken","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"}],"name":"buyAllTokens","outputs":[{"internalType":"uint256","name":"amountOut","type":"uint256"},{"internalType":"uint256","name":"fee","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"amountIn","type":"uint256"},{"internalType":"uint256","name":"minAmountOut","type":"uint256"},{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"}],"name":"buyTokens","outputs":[{"internalType":"uint256","name":"amountOut","type":"uint256"},{"internalType":"uint256","name":"fee","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"amountIn","type":"uint256"},{"internalType":"uint256","name":"minAmountOut","type":"uint256"},{"internalType":"address","name":"to","type":"address"}],"name":"buyTokens","outputs":[{"internalType":"uint256","name":"amountOut","type":"uint256"},{"internalType":"uint256","name":"fee","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"minAmountOut","type":"uint256"},{"internalType":"address","name":"to","type":"address"}],"name":"buyTokensWithBera","outputs":[{"internalType":"uint256","name":"amountOut","type":"uint256"},{"internalType":"uint256","name":"fee","type":"uint256"}],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"canClaimIncentive","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"claimTokens","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"claimableTokens","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"collectExcessTokens","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"subtractedValue","type":"uint256"}],"name":"decreaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"deployer","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"dexFactory","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"dexPair","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"eip712Domain","outputs":[{"internalType":"bytes1","name":"fields","type":"bytes1"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"version","type":"string"},{"internalType":"uint256","name":"chainId","type":"uint256"},{"internalType":"address","name":"verifyingContract","type":"address"},{"internalType":"bytes32","name":"salt","type":"bytes32"},{"internalType":"uint256[]","name":"extensions","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amountOut","type":"uint256"}],"name":"getAmountInBuy","outputs":[{"internalType":"uint256","name":"amountIn","type":"uint256"},{"internalType":"uint256","name":"fee","type":"uint256"},{"internalType":"uint256","name":"sqrtP_new","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getAmountInBuyRemainingTokens","outputs":[{"internalType":"uint256","name":"amountIn","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amountOut","type":"uint256"}],"name":"getAmountInSell","outputs":[{"internalType":"uint256","name":"amountIn","type":"uint256"},{"internalType":"uint256","name":"fee","type":"uint256"},{"internalType":"uint256","name":"sqrtP_new","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amountIn","type":"uint256"}],"name":"getAmountOutBuy","outputs":[{"internalType":"uint256","name":"amountOut","type":"uint256"},{"internalType":"uint256","name":"fee","type":"uint256"},{"internalType":"uint256","name":"sqrtP_new","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amountIn","type":"uint256"}],"name":"getAmountOutSell","outputs":[{"internalType":"uint256","name":"amountOut","type":"uint256"},{"internalType":"uint256","name":"fee","type":"uint256"},{"internalType":"uint256","name":"sqrtP_new","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getCurrentPrice","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_sqrtPa","type":"uint256"},{"internalType":"uint256","name":"_sqrtPb","type":"uint256"},{"internalType":"uint256","name":"_totalTokens","type":"uint256"},{"internalType":"uint16","name":"_graduationFee","type":"uint16"}],"name":"getTokensInPool","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_sqrtPa","type":"uint256"},{"internalType":"uint256","name":"_sqrtPb","type":"uint256"},{"internalType":"uint256","name":"_tokensInPool","type":"uint256"}],"name":"getTotalRaise","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getTotalRaise","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"graduated","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"graduationTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"addedValue","type":"uint256"}],"name":"increaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_pandaToken","type":"address"},{"components":[{"internalType":"address","name":"baseToken","type":"address"},{"internalType":"uint256","name":"sqrtPa","type":"uint256"},{"internalType":"uint256","name":"sqrtPb","type":"uint256"},{"internalType":"uint256","name":"vestingPeriod","type":"uint256"}],"internalType":"struct IPandaStructs.PandaPoolParams","name":"pp","type":"tuple"},{"internalType":"uint256","name":"_totalTokens","type":"uint256"},{"internalType":"address","name":"_deployer","type":"address"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"initializePool","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"isPandaToken","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"liquidity","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"minTradeSize","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"moveLiquidity","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"nonces","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pandaFactory","outputs":[{"internalType":"contract IPandaFactory","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pandaReserve","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pandaToken","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"permit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"poolFees","outputs":[{"internalType":"uint16","name":"buyFee","type":"uint16"},{"internalType":"uint16","name":"sellFee","type":"uint16"},{"internalType":"uint16","name":"graduationFee","type":"uint16"},{"internalType":"uint16","name":"deployerFeeShare","type":"uint16"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"remainingTokensInPool","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amountIn","type":"uint256"},{"internalType":"uint256","name":"minAmountOut","type":"uint256"},{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"}],"name":"sellTokens","outputs":[{"internalType":"uint256","name":"amountOut","type":"uint256"},{"internalType":"uint256","name":"fee","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"amountIn","type":"uint256"},{"internalType":"uint256","name":"minAmountOut","type":"uint256"},{"internalType":"address","name":"to","type":"address"}],"name":"sellTokens","outputs":[{"internalType":"uint256","name":"amountOut","type":"uint256"},{"internalType":"uint256","name":"fee","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"amountIn","type":"uint256"},{"internalType":"uint256","name":"minAmountOut","type":"uint256"},{"internalType":"address","name":"to","type":"address"}],"name":"sellTokensForBera","outputs":[{"internalType":"uint256","name":"amountOut","type":"uint256"},{"internalType":"uint256","name":"fee","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"sqrtP","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"sqrtPa","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"sqrtPb","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"tokensBoughtInPool","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"tokensClaimed","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"tokensForLp","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"tokensInPool","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"totalBalanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalRaise","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalTokens","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"treasury","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"vestedBalanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"vestingPeriod","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"viewExcessTokens","outputs":[{"internalType":"uint256","name":"excessPandaTokens","type":"uint256"},{"internalType":"uint256","name":"excessBaseTokens","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"wbera","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"stateMutability":"payable","type":"receive"}]
Loading...
Loading
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.