BERA Price: $6.05 (-1.77%)

Contract

0xb749584F9fC418Cf905d54f462fdbFdC7462011b

Overview

BERA Balance

Berachain LogoBerachain LogoBerachain Logo0 BERA

BERA Value

$0.00

Token Holdings

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To
Approve26030262025-03-20 17:18:121 min ago1742491092IN
0xb749584F...C7462011b
0 BERA00.00000032
Approve26029582025-03-20 17:16:003 mins ago1742490960IN
0xb749584F...C7462011b
0 BERA00.000006
Approve26028012025-03-20 17:10:528 mins ago1742490652IN
0xb749584F...C7462011b
0 BERA00.00000143
Approve26026682025-03-20 17:06:3612 mins ago1742490396IN
0xb749584F...C7462011b
0 BERA00.00000081
Approve26024882025-03-20 17:00:4618 mins ago1742490046IN
0xb749584F...C7462011b
0 BERA00.000002
Approve26024482025-03-20 16:59:2820 mins ago1742489968IN
0xb749584F...C7462011b
0 BERA00.000001
Approve26023092025-03-20 16:54:5924 mins ago1742489699IN
0xb749584F...C7462011b
0 BERA00.00000026
Approve26022022025-03-20 16:51:3128 mins ago1742489491IN
0xb749584F...C7462011b
0 BERA00.00000925
Approve26021552025-03-20 16:49:5929 mins ago1742489399IN
0xb749584F...C7462011b
0 BERA00.00001008
Approve26020392025-03-20 16:46:0833 mins ago1742489168IN
0xb749584F...C7462011b
0 BERA0.000000040.001001
Approve26019582025-03-20 16:43:3036 mins ago1742489010IN
0xb749584F...C7462011b
0 BERA00.000205
Approve26019522025-03-20 16:43:2036 mins ago1742489000IN
0xb749584F...C7462011b
0 BERA00.000011
Approve26019222025-03-20 16:42:2237 mins ago1742488942IN
0xb749584F...C7462011b
0 BERA00.00000355
Approve26018742025-03-20 16:40:4838 mins ago1742488848IN
0xb749584F...C7462011b
0 BERA00.000011
Approve26018112025-03-20 16:38:4740 mins ago1742488727IN
0xb749584F...C7462011b
0 BERA00.00001475
Approve26016982025-03-20 16:35:0844 mins ago1742488508IN
0xb749584F...C7462011b
0 BERA00.00001383
Approve26014522025-03-20 16:27:1252 mins ago1742488032IN
0xb749584F...C7462011b
0 BERA00.00000835
Approve26013822025-03-20 16:24:5754 mins ago1742487897IN
0xb749584F...C7462011b
0 BERA00.000017
Approve26013392025-03-20 16:23:3455 mins ago1742487814IN
0xb749584F...C7462011b
0 BERA00.000024
Approve26011642025-03-20 16:17:501 hr ago1742487470IN
0xb749584F...C7462011b
0 BERA0.000002590.0957473
Approve26011072025-03-20 16:15:581 hr ago1742487358IN
0xb749584F...C7462011b
0 BERA00.00001059
Approve26009552025-03-20 16:11:021 hr ago1742487062IN
0xb749584F...C7462011b
0 BERA0.000000040.00101
Approve26007622025-03-20 16:04:451 hr ago1742486685IN
0xb749584F...C7462011b
0 BERA00.000002
Approve26006422025-03-20 16:00:531 hr ago1742486453IN
0xb749584F...C7462011b
0 BERA00.000011
Approve26005602025-03-20 15:58:091 hr ago1742486289IN
0xb749584F...C7462011b
0 BERA00.000011
View all transactions

Latest 25 internal transactions (View All)

Parent Transaction Hash Block From To
9582292025-02-10 13:08:0338 days ago1739192883
0xb749584F...C7462011b
0.1 BERA
9582292025-02-10 13:08:0338 days ago1739192883
0xb749584F...C7462011b
0.1 BERA
9582282025-02-10 13:08:0138 days ago1739192881
0xb749584F...C7462011b
0.1 BERA
9582282025-02-10 13:08:0138 days ago1739192881
0xb749584F...C7462011b
0.1 BERA
9582282025-02-10 13:08:0138 days ago1739192881
0xb749584F...C7462011b
0.1 BERA
9582282025-02-10 13:08:0138 days ago1739192881
0xb749584F...C7462011b
0.1 BERA
9582272025-02-10 13:07:5938 days ago1739192879
0xb749584F...C7462011b
0.1 BERA
9582272025-02-10 13:07:5938 days ago1739192879
0xb749584F...C7462011b
0.1 BERA
9582272025-02-10 13:07:5938 days ago1739192879
0xb749584F...C7462011b
0.1 BERA
9582272025-02-10 13:07:5938 days ago1739192879
0xb749584F...C7462011b
0.1 BERA
9582272025-02-10 13:07:5938 days ago1739192879
0xb749584F...C7462011b
0.1 BERA
9582272025-02-10 13:07:5938 days ago1739192879
0xb749584F...C7462011b
0.1 BERA
9582272025-02-10 13:07:5938 days ago1739192879
0xb749584F...C7462011b
0.1 BERA
9582272025-02-10 13:07:5938 days ago1739192879
0xb749584F...C7462011b
0.1 BERA
9582252025-02-10 13:07:5538 days ago1739192875
0xb749584F...C7462011b
0.1 BERA
9582252025-02-10 13:07:5538 days ago1739192875
0xb749584F...C7462011b
0.1 BERA
9582252025-02-10 13:07:5538 days ago1739192875
0xb749584F...C7462011b
0.1 BERA
9582252025-02-10 13:07:5538 days ago1739192875
0xb749584F...C7462011b
0.1 BERA
9580852025-02-10 13:03:2738 days ago1739192607
0xb749584F...C7462011b
0.1 BERA
9580852025-02-10 13:03:2738 days ago1739192607
0xb749584F...C7462011b
0.1 BERA
9580852025-02-10 13:03:2738 days ago1739192607
0xb749584F...C7462011b
0.1 BERA
9580852025-02-10 13:03:2738 days ago1739192607
0xb749584F...C7462011b
0.1 BERA
9580852025-02-10 13:03:2738 days ago1739192607
0xb749584F...C7462011b
0.1 BERA
9580852025-02-10 13:03:2738 days ago1739192607
0xb749584F...C7462011b
0.1 BERA
9580852025-02-10 13:03:2738 days ago1739192607
0xb749584F...C7462011b
0.1 BERA
View All Internal Transactions
Loading...
Loading

Minimal Proxy Contract for 0x682707f31350423980009161c8e696a8fb068b0d

Contract Name:
PandaToken

Compiler Version
v0.8.19+commit.7dd6d404

Optimization Enabled:
Yes with 200 runs

Other Settings:
paris EvmVersion

Contract Source Code (Solidity Standard Json-Input format)

File 1 of 25 : PandaToken.sol
// SPDX-License-Identifier: MIT
pragma solidity =0.8.19;

import {ERC20Permit, ERC20} from "@openzeppelin/contracts/token/ERC20/extensions/ERC20Permit.sol";
import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";
import {PandaPool, TransferHelper, IERC20} from "src/panda/PandaPool.sol";
import {PandaMath} from "src/libraries/PandaMath.sol";
import "src/interfaces/IV2Pair.sol";
import "src/interfaces/IV2Factory.sol";

contract PandaToken is ERC20Permit, PandaPool {
    using Math for uint256;

    address public dexFactory;
    address public dexPair;

    string private _name;
    string private _symbol;

    function VERSION() external pure virtual override returns (string memory) {
        return "PandaTokenV1";
    }

    function name() public view override returns (string memory) {
        return _name;
    }

    function symbol() public view override returns (string memory) {
        return _symbol;
    }

    constructor() ERC20Permit("PandaToken") ERC20("PandaToken", "PT") PandaPool() {}

    function _beforeInitializePool(bytes calldata data) internal override {
        _mint(address(this), pandaFactory.TOKEN_SUPPLY());
        (_name, _symbol) = abi.decode(data, (string, string));
    }

    function _afterInitializePool(bytes calldata /*data*/) internal override {
        require(vestingPeriod == 0, "PandaToken: VESTING_NONZERO"); //We don't allow vesting in the standard PandaToken
        require(totalTokens == pandaFactory.TOKEN_SUPPLY(), "PandaToken: INVALID_SUPPLY"); //Has to use default total supply
        dexFactory = pandaFactory.dexFactory();
        dexPair = PandaMath.getDexPair(address(this), baseToken, dexFactory, pandaFactory.initCodeHash());
    }

    function _moveLiquidity() internal override {
        address _pandaToken = pandaToken;
        address _baseToken = baseToken;

        IV2Factory _dexFactory = IV2Factory(dexFactory);
        uint256 graduationFeeInBaseTokens = baseReserve * poolFees.graduationFee / PandaMath.FEE_SCALE;

        uint256 amountBase = baseReserve - graduationFeeInBaseTokens;

        //PandaTokens added to LP calculated such that the dex price is the same as the price at graduation
        //If exactly 100% of the tokensInPool are sold, amountPanda == tokensForLp and price == sqrtPb**2
        //If slightly less than 100% are sold: tokensForLp <= amountPanda <= tokensForLp+pandaReserve
        uint256 amountPanda = amountBase.mulDiv(PandaMath.PRICE_SCALE, getCurrentPrice(), Math.Rounding.Down);

        //Enforce the bounds discussed
        if(amountPanda > tokensForLp + pandaReserve) {amountPanda = tokensForLp + pandaReserve;}
        if(amountPanda < tokensForLp) {amountPanda = tokensForLp;}

        //Create pair if necessary
        address pair = _dexFactory.getPair(_pandaToken, _baseToken);
        if(pair == address(0)) {
            pair = _dexFactory.createPair(_pandaToken, _baseToken);
        }
        require(pair == dexPair, "PandaPool: INVALID_PAIR");

        //mark graduated
        graduated = true;
        graduationTime = block.timestamp;

        TransferHelper.safeTransfer(_pandaToken, pair, amountPanda);
        TransferHelper.safeTransfer(_baseToken, pair, amountBase);
        IV2Pair(pair).mint(DEADADDRESS);
        tokensForLp = 0;

        //Deployer fee share
        uint256 deployerFee = graduationFeeInBaseTokens * poolFees.deployerFeeShare / PandaMath.FEE_SCALE;
        TransferHelper.safeTransfer(_baseToken, deployer, deployerFee);

        //Transfer remaining baseTokens to the treasury
        TransferHelper.safeTransfer(_baseToken, treasury, IERC20(_baseToken).balanceOf(address(this)));

        emit LiquidityMoved(amountPanda, amountBase);
    }

    //transfer blacklist the v2 pool until graduated from PandaPool
    function _beforeTokenTransfer(address /*from*/, address to, uint256 /*amount*/) internal view override {
        require(graduated || to != dexPair, "PandaToken: INVALID_TRANSFER");
    }

    // No approvals needed to trade within the bonding curve
    function allowance(address owner, address spender) public view override returns (uint256) {
        if (spender == address(this)) {
            return type(uint256).max;
        } else {
            return super.allowance(owner, spender);
        }
    }

}

File 2 of 25 : ERC20Permit.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (token/ERC20/extensions/ERC20Permit.sol)

pragma solidity ^0.8.0;

import "./IERC20Permit.sol";
import "../ERC20.sol";
import "../../../utils/cryptography/ECDSA.sol";
import "../../../utils/cryptography/EIP712.sol";
import "../../../utils/Counters.sol";

/**
 * @dev Implementation of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * _Available since v3.4._
 */
abstract contract ERC20Permit is ERC20, IERC20Permit, EIP712 {
    using Counters for Counters.Counter;

    mapping(address => Counters.Counter) private _nonces;

    // solhint-disable-next-line var-name-mixedcase
    bytes32 private constant _PERMIT_TYPEHASH =
        keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");
    /**
     * @dev In previous versions `_PERMIT_TYPEHASH` was declared as `immutable`.
     * However, to ensure consistency with the upgradeable transpiler, we will continue
     * to reserve a slot.
     * @custom:oz-renamed-from _PERMIT_TYPEHASH
     */
    // solhint-disable-next-line var-name-mixedcase
    bytes32 private _PERMIT_TYPEHASH_DEPRECATED_SLOT;

    /**
     * @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`.
     *
     * It's a good idea to use the same `name` that is defined as the ERC20 token name.
     */
    constructor(string memory name) EIP712(name, "1") {}

    /**
     * @inheritdoc IERC20Permit
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) public virtual override {
        require(block.timestamp <= deadline, "ERC20Permit: expired deadline");

        bytes32 structHash = keccak256(abi.encode(_PERMIT_TYPEHASH, owner, spender, value, _useNonce(owner), deadline));

        bytes32 hash = _hashTypedDataV4(structHash);

        address signer = ECDSA.recover(hash, v, r, s);
        require(signer == owner, "ERC20Permit: invalid signature");

        _approve(owner, spender, value);
    }

    /**
     * @inheritdoc IERC20Permit
     */
    function nonces(address owner) public view virtual override returns (uint256) {
        return _nonces[owner].current();
    }

    /**
     * @inheritdoc IERC20Permit
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view override returns (bytes32) {
        return _domainSeparatorV4();
    }

    /**
     * @dev "Consume a nonce": return the current value and increment.
     *
     * _Available since v4.1._
     */
    function _useNonce(address owner) internal virtual returns (uint256 current) {
        Counters.Counter storage nonce = _nonces[owner];
        current = nonce.current();
        nonce.increment();
    }
}

File 3 of 25 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1, "Math: mulDiv overflow");

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
        }
    }
}

File 4 of 25 : PandaPool.sol
// SPDX-License-Identifier: MIT
pragma solidity =0.8.19;

import "@openzeppelin/contracts/security/ReentrancyGuard.sol";
import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";
import "src/interfaces/IWETH.sol";
import "src/interfaces/IPandaFactory.sol";
import "src/libraries/TransferHelper.sol";
import {PandaMath} from "src/libraries/PandaMath.sol";
//import "forge-std/console.sol";

//Panda Pools bonding curve work like providing single-sided liquidity into a UniV3 style dex.
//Since all the liquidity is provided in the token and there are no other liquidity providers, this simplifies to a swapping within a single-tick case in UniV3
abstract contract PandaPool is ReentrancyGuard {
    using Math for uint256;
    IPandaFactory public pandaFactory;
    address public pandaToken; //pandaToken
    address public baseToken; //baseToken

    address public treasury;
    address internal constant DEADADDRESS = 0x000000000000000000000000000000000000dEaD;
    uint256 public constant GRADUATION_THRESHOLD = 25; //Move liquidity when this many bps of the pool remains (< 25 bps)

    //Fees
    IPandaStructs.PandaFees public poolFees;

    //Deployer
    address public deployer; //User that deployed the pool

    //Note the pool settings are analogous to single-sided liquidity provision on uniswap
    //Pool configs (inputs)
    uint256 public sqrtPa; //sqrt(P_a), sqrt of lower bound price
    uint256 public sqrtPb; //sqrt(P_b), sqrt of upper bound price
    uint256 public totalTokens; //Total tokens in pool
    uint256 public minTradeSize; //Minimum trade size in baseToken
    uint256 public vestingPeriod; //Vesting period for deployer incentives
    address public wbera; //Wrapped Bera address to enable native BERA swaps

    //Pool settings (calculated, constant)
    uint256 public tokensForLp;
    uint256 public tokensInPool;
    uint256 public totalRaise; //Total base token raised with fees to complete the pool
    uint256 public liquidity; //L, which is constant given P_a, P_b, and tokensInPool. L = tokensInPool * (sqrtPa * sqrtPb) / (sqrtPb - sqrtPa)

    //Pool state (variables, tracks how much has been bought/sold in the pool)
    uint256 public sqrtP; //sqrt(P), current price, ranges from sqrtPa to sqrtPb
    uint256 public pandaReserve; //amount of panda token in pool (real reserve, not virtual)
    uint256 public baseReserve; //amount of base token in pool (real reserve, not virtual)

    bool private initialized; //PandaPool initialized (can only be done once, by factory)

    mapping(address => uint256) public tokensBoughtInPool; //net amount each user has bought (regardless of transfers)
    mapping(address => uint256) public tokensClaimed; //amount each user has claimed (when vesting is on)

    //Graduation state
    bool public graduated = false; //Flag to mark pool as graduated (after moveLiquidity is called)
    uint256 public graduationTime; //Time of graduation

    // called once by the factory at time of deployment
    function initializePool(
        address _pandaToken,
        IPandaStructs.PandaPoolParams calldata pp,
        uint256 _totalTokens,
        address _deployer,
        bytes calldata data
    ) external {
        require(!initialized, "PandaPool: ALREADY_INITIALIZED");
        pandaFactory = IPandaFactory(msg.sender);

        _beforeInitializePool(data);

        treasury = pandaFactory.treasury();
        IPandaStructs.PandaFees memory _poolFees = pandaFactory.getPoolFees();
        require(_poolFees.buyFee <= PandaMath.MAX_FEE && _poolFees.sellFee <= PandaMath.MAX_FEE &&
                _poolFees.graduationFee <= PandaMath.MAX_FEE && _poolFees.deployerFeeShare <= PandaMath.MAX_DEPLOYER_FEE_SHARE,
                "PandaPool: FEES_MISCONFIGURED");
        poolFees = _poolFees;

        require(_pandaToken != pp.baseToken, "PandaPool: IDENTICAL_ADDRESSES");
        require(_pandaToken != address(0) && pp.baseToken != address(0), "PandaPool: ZERO_ADDRESS");

        pandaToken = _pandaToken;
        baseToken = pp.baseToken;
        wbera = pandaFactory.wbera();

        totalTokens = _totalTokens;

        require(pp.sqrtPb > pp.sqrtPa, "PandaPool: PRICE_MISCONFIGURED");
        require(pp.sqrtPa > 0, "PandaPool: INVALID_START_PRICE");

        uint256 _tokensInPool = getTokensInPool(pp.sqrtPa, pp.sqrtPb, _totalTokens, _poolFees.graduationFee);
        require(tokensInPool <= totalTokens, "PandaPool: INVALID_TOKENSINPOOL");
        tokensInPool = _tokensInPool;
        tokensForLp = _totalTokens - tokensInPool;

        //initialize sqrtPrice and liquidity, used for price curve calcs
        sqrtPa = pp.sqrtPa;
        sqrtPb = pp.sqrtPb;
        liquidity = tokensInPool.mulDiv(pp.sqrtPa * pp.sqrtPb, pp.sqrtPb - pp.sqrtPa, Math.Rounding.Down);
        totalRaise = PandaMath.getTotalRaise(pp.sqrtPa, pp.sqrtPb, _tokensInPool);

        //initialize reserves and sqrtP
        _update(tokensInPool, 0, sqrtPa);

        minTradeSize = pandaFactory.minTradeSize(baseToken);
        deployer = _deployer;
        vestingPeriod = pp.vestingPeriod;

        initialized = true;

        _afterInitializePool(data);

        emit PoolInitialized(
            _pandaToken,
            pp.baseToken,
            pp.sqrtPa,
            pp.sqrtPb,
            pp.vestingPeriod,
            _deployer,
            data
        );
    }

    //***********************IMPLEMENTATION DETAILS***********************************
    function VERSION() external virtual pure returns (string memory);
    //Hooks to implement custom logic
    function _beforeInitializePool(bytes calldata data) internal virtual {}
    function _afterInitializePool(bytes calldata data) internal virtual {}

    //flag to note if the pool is for a pandaToken that's also being deployed. Default true, override if not
    //This means that by default, the PandaFactory will use defaults associated with pandaToken pools
    function isPandaToken() external view virtual returns (bool) {
        return true;
    }

    //flag to note when incentives can be claimed. Default is if pool has graduated
    function canClaimIncentive() external view virtual returns (bool) {
        return graduated;
    }

    //Calculate tokens to be sold in the pool (vs tokens for LP)
    //Default logic calculated here, see notes in PandaMath library
    //Can be overriden for more advanced logic that's based on how moveLiquidity works
    function getTokensInPool(uint256 _sqrtPa, uint256 _sqrtPb, uint256 _totalTokens, uint16 _graduationFee) public view virtual returns (uint256) {
        return PandaMath.getTokensInPool(_sqrtPa, _sqrtPb, _totalTokens, _graduationFee);
    }

    //Helper function to determine total raise using only deployment parameters
    function getTotalRaise(uint256 _sqrtPa, uint256 _sqrtPb, uint256 _tokensInPool) public view virtual returns (uint256) {
        return PandaMath.getTotalRaise(_sqrtPa, _sqrtPb, _tokensInPool);
    }

    //Normally, moveLiquidity will auto-trigger if buyTokens flips over the graduation threshold
    //This is an external function than can be called by anyone (e.g. bots) to trigger graduation
    function moveLiquidity() external virtual nonReentrant {
        require(!graduated, "PandaPool: GRADUATED");
        require(pandaReserve <= tokensInPool * GRADUATION_THRESHOLD / PandaMath.FEE_SCALE, "PandaPool: POOL_NOT_EMPTY");
        _moveLiquidity();
    }

    //Implement custom logic in implementation
    function _moveLiquidity() internal virtual {}

    //***********************MODIFIERS***********************************************
    modifier notGraduated() {
        require(!graduated, "PandaPool: GRADUATED");
        _;
    }

    modifier onlyBeraPair() {
        require(wbera == baseToken, "PandaPool: NOT_BERA_PAIR");
        _;
    }

    //***********************POOL STATE***********************************************
    function getCurrentPrice() public view returns (uint256) {
        return sqrtP*sqrtP;
    }

    //Update pool state (reserves and sqrtP)
    function _update(uint256 _pandaReserve, uint256 _baseReserve, uint256 _sqrtP) internal {
        //Update reserves
        sqrtP = _sqrtP;
        pandaReserve = _pandaReserve;
        baseReserve = _baseReserve;

        require(pandaReserve <= IERC20(pandaToken).balanceOf(address(this)) - tokensForLp &&
                baseReserve <= IERC20(baseToken).balanceOf(address(this)), "PandaPool: RESERVE_OVERFLOW");

        emit Sync(pandaReserve, baseReserve, sqrtP);
    }

    //***********************SWAP FUNCTIONS*******************************************
    function buyTokensWithBera(uint256 minAmountOut, address to) external payable onlyBeraPair nonReentrant returns (uint256 amountOut, uint256 fee) {
        IWETH(baseToken).deposit{value: msg.value}();
        return _buyTokens(msg.value, minAmountOut, address(this), to);
    }

    function buyTokens(uint256 amountIn, uint256 minAmountOut, address to) external nonReentrant returns (uint256 amountOut, uint256 fee) {
        return _buyTokens(amountIn, minAmountOut, msg.sender, to);
    }

    //"to" must be the end-user to properly increment their tokenBoughtInPool balance
    //This method allows external contracts (routers, bots) to call with "from" and "to" as the end-user
    //Otherwise, it can allow others to swap on behalf of the end-user without authorization (if they gave approval)
    function buyTokens(uint256 amountIn, uint256 minAmountOut, address from, address to) external nonReentrant returns (uint256 amountOut, uint256 fee) {
        require(msg.sender == from || (msg.sender != from && from == tx.origin && to == tx.origin), "PandaPool: INVALID_FROM_TO");
        return _buyTokens(amountIn, minAmountOut, from, to);
    }

    function buyAllTokens(address to) external nonReentrant returns (uint256 amountOut, uint256 fee) {
        uint256 minAmountOut = pandaReserve*9900/10000;
        return _buyTokens(getAmountInBuyRemainingTokens(), minAmountOut, msg.sender, to);
    }

    function _buyTokens(uint256 amountIn, uint256 minAmountOut, address from, address to) internal returns (uint256 amountOut, uint256 fee) {
        require(to != address(0), "PandaPool: INVALID_TO");
        uint256 sqrtP_new;
        (amountOut, fee, sqrtP_new) = getAmountOutBuy(amountIn);
        require(amountOut >= minAmountOut, "PandaPool: INSUFFICIENT_OUTPUT_AMOUNT");

        //Transfers
        if(from != address(this)) {
            TransferHelper.safeTransferFrom(baseToken, from, address(this), amountIn);
        }
        if(vestingPeriod == 0) {
            TransferHelper.safeTransfer(pandaToken, to, amountOut);
        } else {
            tokensBoughtInPool[to] += amountOut; //keep track of amount bought if vesting is on
        }
        TransferHelper.safeTransfer(baseToken, treasury, fee);

        //Update reserves
        uint256 baseReserve_new = baseReserve + amountIn - fee;
        uint256 pandaReserve_new = pandaReserve - amountOut;
        _update(pandaReserve_new, baseReserve_new, sqrtP_new);

        emit Swap(msg.sender, 0, amountIn, amountOut, 0, to);

        //Move liquidity if token reserve is depleted
        if(pandaReserve_new <= tokensInPool * GRADUATION_THRESHOLD / PandaMath.FEE_SCALE) {
            _moveLiquidity();
        }
    }

    function sellTokensForBera(uint256 amountIn, uint256 minAmountOut, address to) external onlyBeraPair nonReentrant returns (uint256 amountOut, uint256 fee) {
        (amountOut, fee) = _sellTokens(amountIn, minAmountOut, msg.sender, address(this));
        IWETH(baseToken).withdraw(amountOut);
        TransferHelper.safeTransferETH(to, amountOut);
    }

    function sellTokens(uint256 amountIn, uint256 minAmountOut, address to) external nonReentrant returns (uint256 amountOut, uint256 fee) {
        return _sellTokens(amountIn, minAmountOut, msg.sender, to);
    }

    //"from" must be the end-user to recognize their tokenBoughtInPool balance
    //This method allows external contracts (routers, bots) to call with "from" and "to" as the end-user
    //Otherwise, it can allow others to swap on behalf of the end-user without authorization
    function sellTokens(uint256 amountIn, uint256 minAmountOut, address from, address to) external nonReentrant returns (uint256 amountOut, uint256 fee) {
        require(msg.sender == from || (msg.sender != from && from == tx.origin && to == tx.origin), "PandaPool: INVALID_FROM_TO");
        return _sellTokens(amountIn, minAmountOut, from, to);
    }

    function _sellTokens(uint256 amountIn, uint256 minAmountOut, address from, address to) internal returns (uint256 amountOut, uint256 fee) {
        require(to != address(0), "PandaPool: INVALID_TO");
        uint256 sqrtP_new;
        (amountOut, fee, sqrtP_new) = getAmountOutSell(amountIn);
        require(amountOut >= minAmountOut, "PandaPool: INSUFFICIENT_OUTPUT_AMOUNT");

        //Transfers
        if(vestingPeriod == 0) {
            TransferHelper.safeTransferFrom(pandaToken, from, address(this), amountIn);
        } else {
            //if vesting is on, we track balances with tokensBoughtInPool
            require(amountIn <= tokensBoughtInPool[from], "PandaPool: INSUFFICIENT_VESTED_BOUGHT");
            tokensBoughtInPool[from] -= amountIn;
        }
        if(to != address(this)) {
            TransferHelper.safeTransfer(baseToken, to, amountOut);
        }
        TransferHelper.safeTransfer(baseToken, treasury, fee);

        //Update reserves
        uint256 baseReserve_new = baseReserve - amountOut - fee;
        uint256 pandaReserve_new = pandaReserve + amountIn;

        _update(pandaReserve_new, baseReserve_new, sqrtP_new);

        emit Swap(msg.sender, amountIn, 0, 0, amountOut, to);
    }

    //**************VIEW FUNCTIONS TO CALCULATE SWAP AMOUNTS**************************
    //Buy = swap baseToken for pandaToken
    //@param amountIn: how much baseToken user is swapping
    //@return amountOut: how much pandaToken they will get
    function getAmountOutBuy(uint256 amountIn) notGraduated public view returns (uint256 amountOut, uint256 fee, uint256 sqrtP_new) {
        require(amountIn + 1 gwei >= minTradeSize, "PandaPool: TRADE_BELOW_MIN");
        require(amountIn <= getAmountInBuyRemainingTokens(), "PandaPool: INSUFFICIENT_LIQUIDITY");
        fee = amountIn.mulDiv(poolFees.buyFee, PandaMath.FEE_SCALE, Math.Rounding.Up);
        uint256 deltaBaseReserve = amountIn - fee;
        uint256 baseReserve_new = baseReserve + deltaBaseReserve;
        sqrtP_new = sqrtPa + baseReserve_new.mulDiv(PandaMath.PRICE_SCALE, liquidity, Math.Rounding.Down);

        if(sqrtP_new > sqrtPb) sqrtP_new = sqrtPb;

        uint256 pandaReserve_new = liquidity.mulDiv(sqrtPb - sqrtP_new, sqrtP_new * sqrtPb, Math.Rounding.Up);
        amountOut = pandaReserve - pandaReserve_new;
    }

    //Sell = swap pandaToken for baseToken
    //@param amountIn: how much pandaToken user is swapping
    //@return amountOut: how much baseToken they will get
    function getAmountOutSell(uint256 amountIn) notGraduated public view returns (uint256 amountOut, uint256 fee, uint256 sqrtP_new) {
        uint256 pandaReserve_new = pandaReserve + amountIn; //panda reserve goes up
        sqrtP_new = liquidity.mulDiv(sqrtPb, (pandaReserve_new * sqrtPb + liquidity), Math.Rounding.Up);

        if(sqrtP_new < sqrtPa) sqrtP_new = sqrtPa;

        uint256 baseReserve_new = liquidity.mulDiv(sqrtP_new - sqrtPa, PandaMath.PRICE_SCALE, Math.Rounding.Up);
        require(baseReserve >= baseReserve_new, "PandaPool: INSUFFICIENT_LIQUIDITY");

        uint256 deltaBaseReserve = baseReserve - baseReserve_new;
        require(deltaBaseReserve + 1 gwei >= minTradeSize, "PandaPool: TRADE_BELOW_MIN");

        fee = deltaBaseReserve.mulDiv(poolFees.sellFee, PandaMath.FEE_SCALE, Math.Rounding.Up);
        amountOut = deltaBaseReserve-fee;
    }

    //Buy = swap baseToken for pandaToken
    //@param amountOut: how much pandaToken user wants
    //@return amountIn: how much baseToken they need to send
    function getAmountInBuy(uint256 amountOut) notGraduated public view returns (uint256 amountIn, uint256 fee, uint256 sqrtP_new) {
        require(amountOut <= pandaReserve, "PandaPool: INSUFFICIENT_LIQUIDITY");
        uint256 pandaReserve_new = pandaReserve - amountOut;
        sqrtP_new = liquidity.mulDiv(sqrtPb, (pandaReserve_new * sqrtPb + liquidity), Math.Rounding.Up);

        if(sqrtP_new > sqrtPb) sqrtP_new = sqrtPb;

        uint256 baseReserve_new = liquidity.mulDiv(sqrtP_new - sqrtPa, PandaMath.PRICE_SCALE, Math.Rounding.Up);
        uint256 deltaBaseReserve = baseReserve_new - baseReserve;

        fee = deltaBaseReserve.mulDiv(poolFees.buyFee, PandaMath.FEE_SCALE -poolFees.buyFee, Math.Rounding.Up);
        amountIn = deltaBaseReserve + fee;
        require(amountIn + 1 gwei >= minTradeSize, "PandaPool: TRADE_BELOW_MIN");
    }

    //Sell = swap pandaToken for baseToken
    //@param amountOut: how much baseToken user wants
    //@return amountIn: how much pandaToken they need to send
    function getAmountInSell(uint256 amountOut) notGraduated public view returns (uint256 amountIn, uint256 fee, uint256 sqrtP_new) {
        fee = amountOut.mulDiv(poolFees.sellFee, PandaMath.FEE_SCALE -poolFees.sellFee, Math.Rounding.Up);
        uint256 deltaBaseReserve = amountOut + fee;

        require(deltaBaseReserve + 1 gwei >= minTradeSize, "PandaPool: TRADE_BELOW_MIN");
        require(deltaBaseReserve <= baseReserve, "PandaPool: INSUFFICIENT_LIQUIDITY");
        uint256 baseReserve_new = baseReserve - deltaBaseReserve;
        sqrtP_new = sqrtPa + baseReserve_new.mulDiv(PandaMath.PRICE_SCALE, liquidity, Math.Rounding.Down);

        if(sqrtP_new < sqrtPa) sqrtP_new = sqrtPa;

        uint256 pandaReserve_new = liquidity.mulDiv(sqrtPb - sqrtP_new, sqrtP_new * sqrtPb, Math.Rounding.Up);
        amountIn = pandaReserve_new - pandaReserve;
    }

    //Get remaining tokens in pool = pandaReserve
    function remainingTokensInPool() public view returns (uint256) {
        return pandaReserve;
    }

    //(Independently calculated) amountIn to buy all remaining tokens in the pool
    function getAmountInBuyRemainingTokens() public view returns (uint256 amountIn) {
        uint256 baseNeeded = totalRaise - baseReserve;
        amountIn = baseNeeded.mulDiv(PandaMath.FEE_SCALE + poolFees.buyFee, PandaMath.FEE_SCALE, Math.Rounding.Up);
    }

    function getTotalRaise() public view returns (uint256) {
        require(initialized, "PandaPool: NOT_INITIALIZED");
        return PandaMath.getTotalRaise(sqrtPa, sqrtPb, tokensInPool);
    }

    //********************************************************************************

    //Get claimable tokens after graduation, when vesting is on.
    //When vesting is off, tokens are transferred directly to the user
    //Function can possibly overriden with more advanced vesting logic
    function claimableTokens(address user) public view virtual returns (uint256) {
        require(vestingPeriod != 0, "PandaPool: VESTING_OFF");
        require(graduated, "PandaPool: NOT_GRADUATED");
        uint256 totalBought = tokensBoughtInPool[user];
        uint256 timeElapsed = block.timestamp - graduationTime;
        uint256 available;
        if(timeElapsed >= vestingPeriod) {
            available = totalBought;
        } else {
            available = totalBought * timeElapsed / vestingPeriod;
        }
        return available - tokensClaimed[user];
    }

    //When vesting is off, tokens are transferred directly to the user
    //Claim vested tokens, only valid when vesting is on.
    function claimTokens(address user) external nonReentrant returns (uint256) {
        require(vestingPeriod != 0, "PandaPool: VESTING_OFF");
        uint256 claimable = claimableTokens(user);
        require(claimable > 0, "PandaPool: NO_CLAIMABLE");
        tokensClaimed[user] += claimable;
        TransferHelper.safeTransfer(pandaToken, user, claimable);
        emit TokensClaimed(user, claimable);
        return claimable;
    }

    //View balance excess of reserves, if any (shouldn't be unless donated to the contract)
    function viewExcessTokens() public view returns (uint256 excessPandaTokens, uint256 excessBaseTokens) {
        excessPandaTokens = IERC20(pandaToken).balanceOf(address(this)) - pandaReserve - tokensForLp;
        excessBaseTokens = IERC20(baseToken).balanceOf(address(this)) - baseReserve;
    }

    //Skim excess to treasury. Anyone can call
    function collectExcessTokens() external nonReentrant {
        (uint256 excessPandaTokens, uint256 excessBaseTokens) = viewExcessTokens();
        TransferHelper.safeTransfer(pandaToken, treasury, excessPandaTokens);
        TransferHelper.safeTransfer(baseToken, treasury, excessBaseTokens);
        emit ExcessCollected(excessPandaTokens, excessBaseTokens);
    }

    //Total balance including unvested tokens (front-end friendly)
    function totalBalanceOf(address user) external view returns (uint256) {
        if(vestingPeriod == 0) {
            return IERC20(pandaToken).balanceOf(user);
        } else {
            return IERC20(pandaToken).balanceOf(user) + tokensBoughtInPool[user] - tokensClaimed[user];
        }
    }

    //Claimable / vested balance (front-end friendly)
    function vestedBalanceOf(address user) external view returns (uint256) {
        if(vestingPeriod == 0) {
            return IERC20(pandaToken).balanceOf(user);
        } else {
            return IERC20(pandaToken).balanceOf(user) + claimableTokens(user);
        }
    }

    //Fallback function to handle sellTokensToBera
    receive() external payable {
        require(wbera == baseToken && msg.sender == wbera, "PandaPool: NOT_BERA_PAIR");
    }

    event PoolInitialized(address pandaToken, address baseToken, uint256 sqrtPa, uint256 sqrtPb, uint256 vestingPeriod, address deployer, bytes data);
    event Swap(address indexed sender, uint amount0In, uint amount1In, uint amount0Out, uint amount1Out, address indexed to);
    event Sync(uint256 pandaReserve, uint256 baseReserve, uint256 sqrtPrice);
    event ExcessCollected(uint256 excessPandaTokens, uint256 excessBaseTokens);
    event LiquidityMoved(uint256 amountPanda, uint256 amountBase);
    event TokensClaimed(address indexed user, uint256 amount);
}

File 5 of 25 : PandaMath.sol
// SPDX-License-Identifier: UNLICENSED
pragma solidity =0.8.19;

import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";


library PandaMath {
    using Math for uint256;

    uint256 internal constant PRICE_SCALE = 1e36;
    uint256 internal constant FEE_SCALE = 10000;

    uint256 internal constant MAX_FEE = 1000;
    uint256 internal constant MAX_DEPLOYER_FEE_SHARE = 1000;

    //Helper function to get the sqrtP of the token, given scaledPrice = baseAmount * PRICE_SCALE / pandaAmount
    ///@param scaledPrice: price of the token specified as baseToken per 1e36 (PRICE_SCALE) pandaToken
    ///@dev For example, to get sqrtP associated with a price of 0.00001, pass in 0.00001 * 1e18 here
    function getSqrtP(uint256 scaledPrice) internal pure returns (uint256) {
        return Math.sqrt(scaledPrice);
    }

    //Get tokens in pool
    //Calculated deterministically based on:
    //totalAmountRaised / tokensForLp (i.e. the price when we move to the dex) == sqrtPb **2 (i.e. the ending price)
    //Calculated:
    //uint raiseAmount = tokensInPool*sqrtPa*sqrtPb/PRICE_SCALE;
    //uint raiseAmountWithFee = raiseAmount - raiseAmount * graduationFee / FEE_SCALE;
    //uint dexPrice = raiseAmountWithFee * PRICE_SCALE / (totalTokens - tokensInPool);
    //Solve for tokensInPool such that dexPrice == sqrtPb**2;
    function getTokensInPool(uint256 sqrtPa, uint256 sqrtPb, uint256 totalTokens, uint16 graduationFee) internal pure returns (uint256) {
        uint256 denom = sqrtPa + sqrtPb - sqrtPa * graduationFee / FEE_SCALE;
        return totalTokens.mulDiv(sqrtPb, denom, Math.Rounding.Up);
    }

    //Helper function to get the total amount of base tokens needed to graduate the pool, given pool parameters
    function getTotalRaise(uint256 sqrtPa, uint256 sqrtPb, uint256 tokensInPool) internal pure returns (uint256) {
        return tokensInPool.mulDiv(sqrtPa * sqrtPb, PRICE_SCALE, Math.Rounding.Up);
    }

    //Calculate the V2 dex pair address for the token, based on the information in the factory
    function getDexPair(address pandaToken, address baseToken, address v2Factory, bytes32 initCodeHash) internal pure returns (address pair) {
        require(baseToken != pandaToken, 'PandaFactory: IDENTICAL_ADDRESSES');
        require(baseToken != address(0) && pandaToken != address(0), 'PandaFactory: ZERO_ADDRESS');
        (address token0, address token1) = baseToken < pandaToken ? (baseToken, pandaToken) : (pandaToken, baseToken);
        pair = address(uint160(uint(keccak256(abi.encodePacked(
            hex'ff',
            v2Factory,
            keccak256(abi.encodePacked(token0, token1)),
            initCodeHash
        )))));
    }


    //MATH for PandaPool.sol
    //TODO: migrate it here with helper functions
    //In general, we follow UniV3 style math

    //LIQUIDITY:
    //Source: https://atiselsts.github.io/pdfs/uniswap-v3-liquidity-math.pdf
    //See Page 2, Equation (5): case where P <= Pa (i.e. Price = startingPrice, as is the case when pool is started)
    // L = x * (sqrt(Pa) - sqrt(Pb)) / (sqrt(Pb) - sqrt(Pa))
    // In our case, x = tokensForLp, sqrt(Pa) = sqrtPa, sqrt(Pb) = sqrtPb
    // L = tokensForLp * (sqrtPa - sqrtPb) / (sqrtPb - sqrtPa)
    // In solidity: liquidity = tokensInPool.mulDiv(sqrtPa * sqrtPb, sqrtPb - sqrtPa, Math.Rounding.Down);
    // Rounding up vs down doesn't matter here, chosen down to be explicit.
    // This is a constant and calculated once upon initialization.

    // Now we can deterministically calculate:
    // - Given PandaReserve: corresponding baseReserve, and price (sqrtP)
    // - Given BaseReserve: corresponding pandaReserve, and price (sqrtP)

    // PandaPool also follows the following property:
    // The average price paid to buy all the tokens in a PandaPool = GEOMEAN(Pa, Pb) = sqrtPa * sqrtPb

    //CALCULATING NEW PRICE:
    //Given pandaReserve_new
    //sqrtP_new = liquidity * sqrtPb / (pandaReserve_new * sqrtPb + liquidity)

    //Derivation:
    //Source: https://atiselsts.github.io/pdfs/uniswap-v3-liquidity-math.pdf.
    //Start with Page 3, Equation 11:
    //x = L * (sqrtPb - sqrtP) / (sqrtP * sqrtPb)
    //x * sqrtPb * sqrtP = L * sqrtPb - L * sqrtP
    //x * sqrtPb * sqrtP + L * sqrtP = L * sqrtPb
    //sqrtP * (x * sqrtPb + L) = L * sqrtPb
    //sqrtP = L * sqrtPb / (x * sqrtPb + L)

    //Given baseReserve_new
    //sqrtP_new = sqrtPa + baseReserve_new * PRICE_SCALE / liquidity
    //Derivation:
    //Source: https://atiselsts.github.io/pdfs/uniswap-v3-liquidity-math.pdf.
    //Start with Page 3, Equation 12:
    //y = L * (sqrtP - sqrtPa)
    //y = L*sqrtP - L*sqrtPa
    //y + L*sqrtPa = L*sqrtP
    //sqrtP = (y + L*sqrtPa) / L
    //sqrtP = y/L + sqrtPa
    //Note: we need to adjust by the PRICE_SCALE

    //ROUNDING:
    //In general we use OZ muldiv to avoid risk of overflow
    //When we calculate new price, round up when buying, round down when selling
    //When we calculate new reserves, always round up (in favor of the liquidity pool)
}

File 6 of 25 : IV2Pair.sol
// SPDX-License-Identifier: UNLICENSED
pragma solidity =0.8.19;

interface IV2Pair {
    event Approval(address indexed owner, address indexed spender, uint value);
    event Transfer(address indexed from, address indexed to, uint value);

    function name() external pure returns (string memory);
    function symbol() external pure returns (string memory);
    function decimals() external pure returns (uint8);
    function totalSupply() external view returns (uint);
    function balanceOf(address owner) external view returns (uint);
    function allowance(address owner, address spender) external view returns (uint);

    function approve(address spender, uint value) external returns (bool);
    function transfer(address to, uint value) external returns (bool);
    function transferFrom(address from, address to, uint value) external returns (bool);

    function DOMAIN_SEPARATOR() external view returns (bytes32);
    function PERMIT_TYPEHASH() external pure returns (bytes32);
    function nonces(address owner) external view returns (uint);

    function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external;

    event Mint(address indexed sender, uint amount0, uint amount1);
    event Burn(address indexed sender, uint amount0, uint amount1, address indexed to);
    event Swap(
        address indexed sender,
        uint amount0In,
        uint amount1In,
        uint amount0Out,
        uint amount1Out,
        address indexed to
    );
    event Sync(uint112 reserve0, uint112 reserve1);

    function MINIMUM_LIQUIDITY() external pure returns (uint);
    function factory() external view returns (address);
    function token0() external view returns (address);
    function token1() external view returns (address);
    function getReserves() external view returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast);
    function price0CumulativeLast() external view returns (uint);
    function price1CumulativeLast() external view returns (uint);
    function kLast() external view returns (uint);

    function mint(address to) external returns (uint liquidity);
    function burn(address to) external returns (uint amount0, uint amount1);
    function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external;
    function skim(address to) external;
    function sync() external;

    function initialize(address, address) external;
}

File 7 of 25 : IV2Factory.sol
// SPDX-License-Identifier: UNLICENSED
pragma solidity =0.8.19;

interface IV2Factory {
    function feeTo() external view returns (address);
    function feeToSetter() external view returns (address);

    function getPair(address tokenA, address tokenB) external view returns (address pair);
    function allPairs(uint) external view returns (address pair);
    function allPairsLength() external view returns (uint);

    function createPair(address tokenA, address tokenB) external returns (address pair);

    function setFeeTo(address) external;
    function setFeeToSetter(address) external;
}

File 8 of 25 : IERC20Permit.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * ==== Security Considerations
 *
 * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
 * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
 * considered as an intention to spend the allowance in any specific way. The second is that because permits have
 * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
 * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
 * generally recommended is:
 *
 * ```solidity
 * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
 *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
 *     doThing(..., value);
 * }
 *
 * function doThing(..., uint256 value) public {
 *     token.safeTransferFrom(msg.sender, address(this), value);
 *     ...
 * }
 * ```
 *
 * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
 * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
 * {SafeERC20-safeTransferFrom}).
 *
 * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
 * contracts should have entry points that don't rely on permit.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     *
     * CAUTION: See Security Considerations above.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

File 9 of 25 : ERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/ERC20.sol)

pragma solidity ^0.8.0;

import "./IERC20.sol";
import "./extensions/IERC20Metadata.sol";
import "../../utils/Context.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 * For a generic mechanism see {ERC20PresetMinterPauser}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * The default value of {decimals} is 18. To change this, you should override
 * this function so it returns a different value.
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC20
 * applications.
 *
 * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
 * This allows applications to reconstruct the allowance for all accounts just
 * by listening to said events. Other implementations of the EIP may not emit
 * these events, as it isn't required by the specification.
 *
 * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
 * functions have been added to mitigate the well-known issues around setting
 * allowances. See {IERC20-approve}.
 */
contract ERC20 is Context, IERC20, IERC20Metadata {
    mapping(address => uint256) private _balances;

    mapping(address => mapping(address => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * All two of these values are immutable: they can only be set once during
     * construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual override returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual override returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the default value returned by this function, unless
     * it's overridden.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual override returns (uint8) {
        return 18;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual override returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual override returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - the caller must have a balance of at least `amount`.
     */
    function transfer(address to, uint256 amount) public virtual override returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, amount);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual override returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
     * `transferFrom`. This is semantically equivalent to an infinite approval.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 amount) public virtual override returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, amount);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Emits an {Approval} event indicating the updated allowance. This is not
     * required by the EIP. See the note at the beginning of {ERC20}.
     *
     * NOTE: Does not update the allowance if the current allowance
     * is the maximum `uint256`.
     *
     * Requirements:
     *
     * - `from` and `to` cannot be the zero address.
     * - `from` must have a balance of at least `amount`.
     * - the caller must have allowance for ``from``'s tokens of at least
     * `amount`.
     */
    function transferFrom(address from, address to, uint256 amount) public virtual override returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, amount);
        _transfer(from, to, amount);
        return true;
    }

    /**
     * @dev Atomically increases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, allowance(owner, spender) + addedValue);
        return true;
    }

    /**
     * @dev Atomically decreases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `spender` must have allowance for the caller of at least
     * `subtractedValue`.
     */
    function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
        address owner = _msgSender();
        uint256 currentAllowance = allowance(owner, spender);
        require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
        unchecked {
            _approve(owner, spender, currentAllowance - subtractedValue);
        }

        return true;
    }

    /**
     * @dev Moves `amount` of tokens from `from` to `to`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `from` must have a balance of at least `amount`.
     */
    function _transfer(address from, address to, uint256 amount) internal virtual {
        require(from != address(0), "ERC20: transfer from the zero address");
        require(to != address(0), "ERC20: transfer to the zero address");

        _beforeTokenTransfer(from, to, amount);

        uint256 fromBalance = _balances[from];
        require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
        unchecked {
            _balances[from] = fromBalance - amount;
            // Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by
            // decrementing then incrementing.
            _balances[to] += amount;
        }

        emit Transfer(from, to, amount);

        _afterTokenTransfer(from, to, amount);
    }

    /** @dev Creates `amount` tokens and assigns them to `account`, increasing
     * the total supply.
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     */
    function _mint(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: mint to the zero address");

        _beforeTokenTransfer(address(0), account, amount);

        _totalSupply += amount;
        unchecked {
            // Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above.
            _balances[account] += amount;
        }
        emit Transfer(address(0), account, amount);

        _afterTokenTransfer(address(0), account, amount);
    }

    /**
     * @dev Destroys `amount` tokens from `account`, reducing the
     * total supply.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     * - `account` must have at least `amount` tokens.
     */
    function _burn(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: burn from the zero address");

        _beforeTokenTransfer(account, address(0), amount);

        uint256 accountBalance = _balances[account];
        require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
        unchecked {
            _balances[account] = accountBalance - amount;
            // Overflow not possible: amount <= accountBalance <= totalSupply.
            _totalSupply -= amount;
        }

        emit Transfer(account, address(0), amount);

        _afterTokenTransfer(account, address(0), amount);
    }

    /**
     * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     */
    function _approve(address owner, address spender, uint256 amount) internal virtual {
        require(owner != address(0), "ERC20: approve from the zero address");
        require(spender != address(0), "ERC20: approve to the zero address");

        _allowances[owner][spender] = amount;
        emit Approval(owner, spender, amount);
    }

    /**
     * @dev Updates `owner` s allowance for `spender` based on spent `amount`.
     *
     * Does not update the allowance amount in case of infinite allowance.
     * Revert if not enough allowance is available.
     *
     * Might emit an {Approval} event.
     */
    function _spendAllowance(address owner, address spender, uint256 amount) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance != type(uint256).max) {
            require(currentAllowance >= amount, "ERC20: insufficient allowance");
            unchecked {
                _approve(owner, spender, currentAllowance - amount);
            }
        }
    }

    /**
     * @dev Hook that is called before any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * will be transferred to `to`.
     * - when `from` is zero, `amount` tokens will be minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual {}

    /**
     * @dev Hook that is called after any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * has been transferred to `to`.
     * - when `from` is zero, `amount` tokens have been minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens have been burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _afterTokenTransfer(address from, address to, uint256 amount) internal virtual {}
}

File 10 of 25 : ECDSA.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.0;

import "../Strings.sol";

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS,
        InvalidSignatureV // Deprecated in v4.8
    }

    function _throwError(RecoverError error) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert("ECDSA: invalid signature");
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert("ECDSA: invalid signature length");
        } else if (error == RecoverError.InvalidSignatureS) {
            revert("ECDSA: invalid signature 's' value");
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature` or error string. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            /// @solidity memory-safe-assembly
            assembly {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength);
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, signature);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) {
        bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
        uint8 v = uint8((uint256(vs) >> 255) + 27);
        return tryRecover(hash, v, r, s);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     *
     * _Available since v4.2._
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, r, vs);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature);
        }

        return (signer, RecoverError.NoError);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, v, r, s);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from a `hash`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) {
        // 32 is the length in bytes of hash,
        // enforced by the type signature above
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, "\x19Ethereum Signed Message:\n32")
            mstore(0x1c, hash)
            message := keccak256(0x00, 0x3c)
        }
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from `s`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s));
    }

    /**
     * @dev Returns an Ethereum Signed Typed Data, created from a
     * `domainSeparator` and a `structHash`. This produces hash corresponding
     * to the one signed with the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
     * JSON-RPC method as part of EIP-712.
     *
     * See {recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) {
        /// @solidity memory-safe-assembly
        assembly {
            let ptr := mload(0x40)
            mstore(ptr, "\x19\x01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            data := keccak256(ptr, 0x42)
        }
    }

    /**
     * @dev Returns an Ethereum Signed Data with intended validator, created from a
     * `validator` and `data` according to the version 0 of EIP-191.
     *
     * See {recover}.
     */
    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19\x00", validator, data));
    }
}

File 11 of 25 : EIP712.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/EIP712.sol)

pragma solidity ^0.8.8;

import "./ECDSA.sol";
import "../ShortStrings.sol";
import "../../interfaces/IERC5267.sol";

/**
 * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
 *
 * The encoding specified in the EIP is very generic, and such a generic implementation in Solidity is not feasible,
 * thus this contract does not implement the encoding itself. Protocols need to implement the type-specific encoding
 * they need in their contracts using a combination of `abi.encode` and `keccak256`.
 *
 * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
 * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
 * ({_hashTypedDataV4}).
 *
 * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
 * the chain id to protect against replay attacks on an eventual fork of the chain.
 *
 * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
 * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
 *
 * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
 * separator of the implementation contract. This will cause the `_domainSeparatorV4` function to always rebuild the
 * separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
 *
 * _Available since v3.4._
 *
 * @custom:oz-upgrades-unsafe-allow state-variable-immutable state-variable-assignment
 */
abstract contract EIP712 is IERC5267 {
    using ShortStrings for *;

    bytes32 private constant _TYPE_HASH =
        keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");

    // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
    // invalidate the cached domain separator if the chain id changes.
    bytes32 private immutable _cachedDomainSeparator;
    uint256 private immutable _cachedChainId;
    address private immutable _cachedThis;

    bytes32 private immutable _hashedName;
    bytes32 private immutable _hashedVersion;

    ShortString private immutable _name;
    ShortString private immutable _version;
    string private _nameFallback;
    string private _versionFallback;

    /**
     * @dev Initializes the domain separator and parameter caches.
     *
     * The meaning of `name` and `version` is specified in
     * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
     *
     * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
     * - `version`: the current major version of the signing domain.
     *
     * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
     * contract upgrade].
     */
    constructor(string memory name, string memory version) {
        _name = name.toShortStringWithFallback(_nameFallback);
        _version = version.toShortStringWithFallback(_versionFallback);
        _hashedName = keccak256(bytes(name));
        _hashedVersion = keccak256(bytes(version));

        _cachedChainId = block.chainid;
        _cachedDomainSeparator = _buildDomainSeparator();
        _cachedThis = address(this);
    }

    /**
     * @dev Returns the domain separator for the current chain.
     */
    function _domainSeparatorV4() internal view returns (bytes32) {
        if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
            return _cachedDomainSeparator;
        } else {
            return _buildDomainSeparator();
        }
    }

    function _buildDomainSeparator() private view returns (bytes32) {
        return keccak256(abi.encode(_TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
    }

    /**
     * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
     * function returns the hash of the fully encoded EIP712 message for this domain.
     *
     * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
     *
     * ```solidity
     * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
     *     keccak256("Mail(address to,string contents)"),
     *     mailTo,
     *     keccak256(bytes(mailContents))
     * )));
     * address signer = ECDSA.recover(digest, signature);
     * ```
     */
    function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
        return ECDSA.toTypedDataHash(_domainSeparatorV4(), structHash);
    }

    /**
     * @dev See {EIP-5267}.
     *
     * _Available since v4.9._
     */
    function eip712Domain()
        public
        view
        virtual
        override
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        )
    {
        return (
            hex"0f", // 01111
            _name.toStringWithFallback(_nameFallback),
            _version.toStringWithFallback(_versionFallback),
            block.chainid,
            address(this),
            bytes32(0),
            new uint256[](0)
        );
    }
}

File 12 of 25 : Counters.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Counters.sol)

pragma solidity ^0.8.0;

/**
 * @title Counters
 * @author Matt Condon (@shrugs)
 * @dev Provides counters that can only be incremented, decremented or reset. This can be used e.g. to track the number
 * of elements in a mapping, issuing ERC721 ids, or counting request ids.
 *
 * Include with `using Counters for Counters.Counter;`
 */
library Counters {
    struct Counter {
        // This variable should never be directly accessed by users of the library: interactions must be restricted to
        // the library's function. As of Solidity v0.5.2, this cannot be enforced, though there is a proposal to add
        // this feature: see https://github.com/ethereum/solidity/issues/4637
        uint256 _value; // default: 0
    }

    function current(Counter storage counter) internal view returns (uint256) {
        return counter._value;
    }

    function increment(Counter storage counter) internal {
        unchecked {
            counter._value += 1;
        }
    }

    function decrement(Counter storage counter) internal {
        uint256 value = counter._value;
        require(value > 0, "Counter: decrement overflow");
        unchecked {
            counter._value = value - 1;
        }
    }

    function reset(Counter storage counter) internal {
        counter._value = 0;
    }
}

File 13 of 25 : ReentrancyGuard.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol)

pragma solidity ^0.8.0;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant _NOT_ENTERED = 1;
    uint256 private constant _ENTERED = 2;

    uint256 private _status;

    constructor() {
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be _NOT_ENTERED
        require(_status != _ENTERED, "ReentrancyGuard: reentrant call");

        // Any calls to nonReentrant after this point will fail
        _status = _ENTERED;
    }

    function _nonReentrantAfter() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
     * `nonReentrant` function in the call stack.
     */
    function _reentrancyGuardEntered() internal view returns (bool) {
        return _status == _ENTERED;
    }
}

File 14 of 25 : IWETH.sol
// SPDX-License-Identifier: UNLICENSED
pragma solidity =0.8.19;

import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";

interface IWETH is IERC20 {
    function deposit() external payable;
    function withdraw(uint wad) external;
}

File 15 of 25 : IPandaFactory.sol
// SPDX-License-Identifier: UNLICENSED
pragma solidity =0.8.19;

import {IPandaStructs} from "./IPandaStructs.sol";

interface IPandaFactory is IPandaStructs {

    function treasury() external view returns (address);
    function wbera() external view returns (address);
    function minRaise(address) external view returns (uint256);
    function minTradeSize(address) external view returns (uint256);

    function MIN_TOKENSINPOOL_SHARE() external view returns (uint256);
    function MAX_TOKENSINPOOL_SHARE() external view returns (uint256);
    function MIN_SQRTP_MULTIPLE() external view returns (uint256);
    function MAX_SQRTP_MULTIPLE() external view returns (uint256);

    function TOKEN_SUPPLY() external view returns (uint256);
    function DEPLOYER_MAX_BPS() external view returns (uint16);

    function dexFactory() external view returns (address);
    function initCodeHash() external view returns (bytes32);

    function isImplementationAllowed(address _implementation) external view returns (bool);
    function allowedImplementations(uint256 index) external view returns (address);

    function incentiveToken() external view returns (address);
    function incentiveAmount() external view returns (uint256);

    function poolToIncentiveClaimed(address) external view returns (bool);
    function deployerNonce(address) external view returns (uint256);

    function allPools(uint256 index) external view returns (address);
    function poolToImplementation(address) external view returns (address);


    function deployPandaToken(
        address implementation,
        IPandaFactory.PandaPoolParams calldata pp,  //baseToken, sqrtPa, sqrtPb, vestingPeriod
        string calldata name,
        string calldata symbol,
        uint16 deployerSupplyBps
    ) external returns (address);

    function deployPandaTokenWithBera(
        address implementation,
        IPandaFactory.PandaPoolParams calldata pp,  //baseToken, sqrtPa, sqrtPb, vestingPeriod
        string calldata name,
        string calldata symbol,
        uint16 deployerSupplyBps
    ) external payable returns (address);

    function deployPandaPool(
        address implementation,
        IPandaFactory.PandaPoolParams calldata pp,  //baseToken, sqrtPa, sqrtPb, vestingPeriod
        uint256 totalTokens,
        address pandaToken,
        bytes calldata data
    ) external returns (address);

    function claimIncentive(address _pandaPool) external;

    function predictPoolAddress(address _implementation, address _deployer) external view returns (address);
    function getSqrtP(uint256 scaledPrice) external view returns (uint256);
    function getPoolFees() external view returns (PandaFees memory);
    function isLegitPool(address _pandaPool) external view returns (bool);
    function allPoolsLength() external view returns (uint256);
    function allowedImplementationsLength() external view returns (uint256);

    function setMinRaise(address _token, uint256 _minRaise) external;
    function setMinTradeSize(address _token, uint256 _minTradeSize) external;
    function setTreasury(address _treasury) external;
    function setPandaPoolFees(uint16 _buyFee, uint16 _sellFee, uint16 _graduationFee, uint16 _deployerFeeShare) external;
    function setDexFactory(address _dexFactory, bytes32 _initCodeHash) external;
    function setAllowedImplementation(address _implementation, bool _allowed) external;
    function setWbera(address _wbera) external;
    function setIncentive(address _incentiveToken, uint256 _incentiveAmount) external;






}

File 16 of 25 : TransferHelper.sol
// SPDX-License-Identifier: UNLICENSED
pragma solidity =0.8.19;

import "@openzeppelin/contracts/token/ERC20/IERC20.sol";

/// @title TransferHelper
/// @notice Contains helper methods for interacting with ERC20 tokens that do not consistently return true/false
/// @dev Forked from Uniswap solidity-lib + added condition to skip 0 value transfers
library TransferHelper {
    function safeApprove(
        address token,
        address to,
        uint256 value
    ) internal {
        (bool success, bytes memory data) = token.call(abi.encodeWithSelector(IERC20.approve.selector, to, value));
        require(
            success && (data.length == 0 || abi.decode(data, (bool))),
            'TransferHelper::safeApprove: approve failed'
        );
    }

    function safeTransfer(
        address token,
        address to,
        uint256 value
    ) internal {
        if (value == 0) return;
        (bool success, bytes memory data) = token.call(abi.encodeWithSelector(IERC20.transfer.selector, to, value));
        require(
            success && (data.length == 0 || abi.decode(data, (bool))),
            'TransferHelper::safeTransfer: transfer failed'
        );
    }

    function safeTransferFrom(
        address token,
        address from,
        address to,
        uint256 value
    ) internal {
        if (value == 0) return;
        (bool success, bytes memory data) = token.call(abi.encodeWithSelector(IERC20.transferFrom.selector, from, to, value));
        require(
            success && (data.length == 0 || abi.decode(data, (bool))),
            'TransferHelper::transferFrom: transferFrom failed'
        );
    }

    function safeTransferETH(address to, uint256 value) internal {
        if (value == 0) return;
        (bool success, ) = to.call{value: value}(new bytes(0));
        require(success, 'TransferHelper::safeTransferETH: ETH transfer failed');
    }
}

File 17 of 25 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 amount) external returns (bool);
}

File 18 of 25 : IERC20Metadata.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.0;

import "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC20 standard.
 *
 * _Available since v4.1._
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

File 19 of 25 : Context.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (utils/Context.sol)

pragma solidity ^0.8.0;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

File 20 of 25 : Strings.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)

pragma solidity ^0.8.0;

import "./math/Math.sol";
import "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant _SYMBOLS = "0123456789abcdef";
    uint8 private constant _ADDRESS_LENGTH = 20;

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toString(int256 value) internal pure returns (string memory) {
        return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return keccak256(bytes(a)) == keccak256(bytes(b));
    }
}

File 21 of 25 : ShortStrings.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/ShortStrings.sol)

pragma solidity ^0.8.8;

import "./StorageSlot.sol";

// | string  | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA   |
// | length  | 0x                                                              BB |
type ShortString is bytes32;

/**
 * @dev This library provides functions to convert short memory strings
 * into a `ShortString` type that can be used as an immutable variable.
 *
 * Strings of arbitrary length can be optimized using this library if
 * they are short enough (up to 31 bytes) by packing them with their
 * length (1 byte) in a single EVM word (32 bytes). Additionally, a
 * fallback mechanism can be used for every other case.
 *
 * Usage example:
 *
 * ```solidity
 * contract Named {
 *     using ShortStrings for *;
 *
 *     ShortString private immutable _name;
 *     string private _nameFallback;
 *
 *     constructor(string memory contractName) {
 *         _name = contractName.toShortStringWithFallback(_nameFallback);
 *     }
 *
 *     function name() external view returns (string memory) {
 *         return _name.toStringWithFallback(_nameFallback);
 *     }
 * }
 * ```
 */
library ShortStrings {
    // Used as an identifier for strings longer than 31 bytes.
    bytes32 private constant _FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;

    error StringTooLong(string str);
    error InvalidShortString();

    /**
     * @dev Encode a string of at most 31 chars into a `ShortString`.
     *
     * This will trigger a `StringTooLong` error is the input string is too long.
     */
    function toShortString(string memory str) internal pure returns (ShortString) {
        bytes memory bstr = bytes(str);
        if (bstr.length > 31) {
            revert StringTooLong(str);
        }
        return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
    }

    /**
     * @dev Decode a `ShortString` back to a "normal" string.
     */
    function toString(ShortString sstr) internal pure returns (string memory) {
        uint256 len = byteLength(sstr);
        // using `new string(len)` would work locally but is not memory safe.
        string memory str = new string(32);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(str, len)
            mstore(add(str, 0x20), sstr)
        }
        return str;
    }

    /**
     * @dev Return the length of a `ShortString`.
     */
    function byteLength(ShortString sstr) internal pure returns (uint256) {
        uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
        if (result > 31) {
            revert InvalidShortString();
        }
        return result;
    }

    /**
     * @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
     */
    function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
        if (bytes(value).length < 32) {
            return toShortString(value);
        } else {
            StorageSlot.getStringSlot(store).value = value;
            return ShortString.wrap(_FALLBACK_SENTINEL);
        }
    }

    /**
     * @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
     */
    function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
        if (ShortString.unwrap(value) != _FALLBACK_SENTINEL) {
            return toString(value);
        } else {
            return store;
        }
    }

    /**
     * @dev Return the length of a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
     *
     * WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
     * actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
     */
    function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
        if (ShortString.unwrap(value) != _FALLBACK_SENTINEL) {
            return byteLength(value);
        } else {
            return bytes(store).length;
        }
    }
}

File 22 of 25 : IERC5267.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (interfaces/IERC5267.sol)

pragma solidity ^0.8.0;

interface IERC5267 {
    /**
     * @dev MAY be emitted to signal that the domain could have changed.
     */
    event EIP712DomainChanged();

    /**
     * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
     * signature.
     */
    function eip712Domain()
        external
        view
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        );
}

File 23 of 25 : IPandaStructs.sol
// SPDX-License-Identifier: UNLICENSED
pragma solidity =0.8.19;

interface IPandaStructs {
    struct PandaFees {
        uint16 buyFee;
        uint16 sellFee;
        uint16 graduationFee;
        uint16 deployerFeeShare;
    }

    struct PandaPoolParams {
        address baseToken;
        uint256 sqrtPa;
        uint256 sqrtPb;
        uint256 vestingPeriod;
    }

}

File 24 of 25 : SignedMath.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}

File 25 of 25 : StorageSlot.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.

pragma solidity ^0.8.0;

/**
 * @dev Library for reading and writing primitive types to specific storage slots.
 *
 * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
 * This library helps with reading and writing to such slots without the need for inline assembly.
 *
 * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
 *
 * Example usage to set ERC1967 implementation slot:
 * ```solidity
 * contract ERC1967 {
 *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
 *
 *     function _getImplementation() internal view returns (address) {
 *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
 *     }
 *
 *     function _setImplementation(address newImplementation) internal {
 *         require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
 *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
 *     }
 * }
 * ```
 *
 * _Available since v4.1 for `address`, `bool`, `bytes32`, `uint256`._
 * _Available since v4.9 for `string`, `bytes`._
 */
library StorageSlot {
    struct AddressSlot {
        address value;
    }

    struct BooleanSlot {
        bool value;
    }

    struct Bytes32Slot {
        bytes32 value;
    }

    struct Uint256Slot {
        uint256 value;
    }

    struct StringSlot {
        string value;
    }

    struct BytesSlot {
        bytes value;
    }

    /**
     * @dev Returns an `AddressSlot` with member `value` located at `slot`.
     */
    function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
     */
    function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
     */
    function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
     */
    function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` with member `value` located at `slot`.
     */
    function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
     */
    function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := store.slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` with member `value` located at `slot`.
     */
    function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
     */
    function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := store.slot
        }
    }
}

Settings
{
  "remappings": [
    "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
    "ds-test/=lib/forge-std/lib/ds-test/src/",
    "erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
    "forge-std/=lib/forge-std/src/",
    "openzeppelin-contracts/=lib/openzeppelin-contracts/",
    "openzeppelin/=lib/openzeppelin-contracts/contracts/",
    "solady/=lib/solady/src/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "ipfs",
    "appendCBOR": true
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "paris",
  "viaIR": false,
  "libraries": {}
}

Contract ABI

API
[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"InvalidShortString","type":"error"},{"inputs":[{"internalType":"string","name":"str","type":"string"}],"name":"StringTooLong","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[],"name":"EIP712DomainChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"excessPandaTokens","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"excessBaseTokens","type":"uint256"}],"name":"ExcessCollected","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"amountPanda","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amountBase","type":"uint256"}],"name":"LiquidityMoved","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"pandaToken","type":"address"},{"indexed":false,"internalType":"address","name":"baseToken","type":"address"},{"indexed":false,"internalType":"uint256","name":"sqrtPa","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"sqrtPb","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"vestingPeriod","type":"uint256"},{"indexed":false,"internalType":"address","name":"deployer","type":"address"},{"indexed":false,"internalType":"bytes","name":"data","type":"bytes"}],"name":"PoolInitialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount0In","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount1In","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount0Out","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount1Out","type":"uint256"},{"indexed":true,"internalType":"address","name":"to","type":"address"}],"name":"Swap","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"pandaReserve","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"baseReserve","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"sqrtPrice","type":"uint256"}],"name":"Sync","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"TokensClaimed","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[],"name":"DOMAIN_SEPARATOR","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"GRADUATION_THRESHOLD","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"VERSION","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"baseReserve","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"baseToken","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"}],"name":"buyAllTokens","outputs":[{"internalType":"uint256","name":"amountOut","type":"uint256"},{"internalType":"uint256","name":"fee","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"amountIn","type":"uint256"},{"internalType":"uint256","name":"minAmountOut","type":"uint256"},{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"}],"name":"buyTokens","outputs":[{"internalType":"uint256","name":"amountOut","type":"uint256"},{"internalType":"uint256","name":"fee","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"amountIn","type":"uint256"},{"internalType":"uint256","name":"minAmountOut","type":"uint256"},{"internalType":"address","name":"to","type":"address"}],"name":"buyTokens","outputs":[{"internalType":"uint256","name":"amountOut","type":"uint256"},{"internalType":"uint256","name":"fee","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"minAmountOut","type":"uint256"},{"internalType":"address","name":"to","type":"address"}],"name":"buyTokensWithBera","outputs":[{"internalType":"uint256","name":"amountOut","type":"uint256"},{"internalType":"uint256","name":"fee","type":"uint256"}],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"canClaimIncentive","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"claimTokens","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"claimableTokens","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"collectExcessTokens","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"subtractedValue","type":"uint256"}],"name":"decreaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"deployer","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"dexFactory","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"dexPair","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"eip712Domain","outputs":[{"internalType":"bytes1","name":"fields","type":"bytes1"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"version","type":"string"},{"internalType":"uint256","name":"chainId","type":"uint256"},{"internalType":"address","name":"verifyingContract","type":"address"},{"internalType":"bytes32","name":"salt","type":"bytes32"},{"internalType":"uint256[]","name":"extensions","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amountOut","type":"uint256"}],"name":"getAmountInBuy","outputs":[{"internalType":"uint256","name":"amountIn","type":"uint256"},{"internalType":"uint256","name":"fee","type":"uint256"},{"internalType":"uint256","name":"sqrtP_new","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getAmountInBuyRemainingTokens","outputs":[{"internalType":"uint256","name":"amountIn","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amountOut","type":"uint256"}],"name":"getAmountInSell","outputs":[{"internalType":"uint256","name":"amountIn","type":"uint256"},{"internalType":"uint256","name":"fee","type":"uint256"},{"internalType":"uint256","name":"sqrtP_new","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amountIn","type":"uint256"}],"name":"getAmountOutBuy","outputs":[{"internalType":"uint256","name":"amountOut","type":"uint256"},{"internalType":"uint256","name":"fee","type":"uint256"},{"internalType":"uint256","name":"sqrtP_new","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amountIn","type":"uint256"}],"name":"getAmountOutSell","outputs":[{"internalType":"uint256","name":"amountOut","type":"uint256"},{"internalType":"uint256","name":"fee","type":"uint256"},{"internalType":"uint256","name":"sqrtP_new","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getCurrentPrice","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_sqrtPa","type":"uint256"},{"internalType":"uint256","name":"_sqrtPb","type":"uint256"},{"internalType":"uint256","name":"_totalTokens","type":"uint256"},{"internalType":"uint16","name":"_graduationFee","type":"uint16"}],"name":"getTokensInPool","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_sqrtPa","type":"uint256"},{"internalType":"uint256","name":"_sqrtPb","type":"uint256"},{"internalType":"uint256","name":"_tokensInPool","type":"uint256"}],"name":"getTotalRaise","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getTotalRaise","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"graduated","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"graduationTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"addedValue","type":"uint256"}],"name":"increaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_pandaToken","type":"address"},{"components":[{"internalType":"address","name":"baseToken","type":"address"},{"internalType":"uint256","name":"sqrtPa","type":"uint256"},{"internalType":"uint256","name":"sqrtPb","type":"uint256"},{"internalType":"uint256","name":"vestingPeriod","type":"uint256"}],"internalType":"struct IPandaStructs.PandaPoolParams","name":"pp","type":"tuple"},{"internalType":"uint256","name":"_totalTokens","type":"uint256"},{"internalType":"address","name":"_deployer","type":"address"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"initializePool","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"isPandaToken","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"liquidity","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"minTradeSize","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"moveLiquidity","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"nonces","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pandaFactory","outputs":[{"internalType":"contract IPandaFactory","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pandaReserve","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pandaToken","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"permit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"poolFees","outputs":[{"internalType":"uint16","name":"buyFee","type":"uint16"},{"internalType":"uint16","name":"sellFee","type":"uint16"},{"internalType":"uint16","name":"graduationFee","type":"uint16"},{"internalType":"uint16","name":"deployerFeeShare","type":"uint16"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"remainingTokensInPool","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amountIn","type":"uint256"},{"internalType":"uint256","name":"minAmountOut","type":"uint256"},{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"}],"name":"sellTokens","outputs":[{"internalType":"uint256","name":"amountOut","type":"uint256"},{"internalType":"uint256","name":"fee","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"amountIn","type":"uint256"},{"internalType":"uint256","name":"minAmountOut","type":"uint256"},{"internalType":"address","name":"to","type":"address"}],"name":"sellTokens","outputs":[{"internalType":"uint256","name":"amountOut","type":"uint256"},{"internalType":"uint256","name":"fee","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"amountIn","type":"uint256"},{"internalType":"uint256","name":"minAmountOut","type":"uint256"},{"internalType":"address","name":"to","type":"address"}],"name":"sellTokensForBera","outputs":[{"internalType":"uint256","name":"amountOut","type":"uint256"},{"internalType":"uint256","name":"fee","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"sqrtP","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"sqrtPa","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"sqrtPb","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"tokensBoughtInPool","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"tokensClaimed","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"tokensForLp","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"tokensInPool","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"totalBalanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalRaise","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalTokens","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"treasury","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"vestedBalanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"vestingPeriod","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"viewExcessTokens","outputs":[{"internalType":"uint256","name":"excessPandaTokens","type":"uint256"},{"internalType":"uint256","name":"excessBaseTokens","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"wbera","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"stateMutability":"payable","type":"receive"}]

Block Transaction Gas Used Reward
view all blocks produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading
Loading...
Loading
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.