BERA Price: $3.61 (-1.95%)

Contract

0xB4a1519956ceE0798EAac3De08F1531F58a0C950

Overview

BERA Balance

Berachain LogoBerachain LogoBerachain Logo0 BERA

BERA Value

$0.00

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To
Withdraw Locked ...40585092025-04-22 21:18:3117 hrs ago1745356711IN
0xB4a15199...F58a0C950
0 BERA0.000035890.15000001
Withdraw Locked ...40327282025-04-22 7:18:4131 hrs ago1745306321IN
0xB4a15199...F58a0C950
0 BERA0.000015140.063287
Withdraw Locked ...33122312025-04-05 19:54:5717 days ago1743882897IN
0xB4a15199...F58a0C950
0 BERA0.000000290.00117251
Withdraw Locked ...32202302025-04-03 17:48:2519 days ago1743702505IN
0xB4a15199...F58a0C950
0 BERA0.000004130.016394
Withdraw Locked ...31324792025-04-01 18:11:2021 days ago1743531080IN
0xB4a15199...F58a0C950
0 BERA0.000001220.005124
Withdraw Locked ...30030582025-03-29 18:42:1124 days ago1743273731IN
0xB4a15199...F58a0C950
0 BERA0.000000460.001863
Withdraw Locked ...28982822025-03-27 10:26:1027 days ago1743071170IN
0xB4a15199...F58a0C950
0 BERA0.000000480.001826
Withdraw Locked ...28937362025-03-27 7:58:4427 days ago1743062324IN
0xB4a15199...F58a0C950
0 BERA0.000000440.001864
Withdraw Locked ...28826282025-03-27 1:57:5127 days ago1743040671IN
0xB4a15199...F58a0C950
0 BERA0.000000270.001035
Withdraw Locked ...28819022025-03-27 1:34:2827 days ago1743039268IN
0xB4a15199...F58a0C950
0 BERA0.000000220.000902
Withdraw Locked ...28402402025-03-26 3:06:4128 days ago1742958401IN
0xB4a15199...F58a0C950
0 BERA0.000000250.000681
Withdraw Locked ...28339642025-03-25 23:43:2128 days ago1742946201IN
0xB4a15199...F58a0C950
0 BERA0.000000050.000228
Withdraw Locked ...28326882025-03-25 23:01:5528 days ago1742943715IN
0xB4a15199...F58a0C950
0 BERA0.000000250.00101
Withdraw Locked ...28250712025-03-25 18:56:2128 days ago1742928981IN
0xB4a15199...F58a0C950
0 BERA0.000000460.00193
Withdraw Locked ...28185502025-03-25 15:24:5528 days ago1742916295IN
0xB4a15199...F58a0C950
0 BERA0.000000160.00064
Withdraw Locked ...28120862025-03-25 11:55:1129 days ago1742903711IN
0xB4a15199...F58a0C950
0 BERA0.000000180.00084
Withdraw Locked ...28021342025-03-25 6:30:5729 days ago1742884257IN
0xB4a15199...F58a0C950
0 BERA0.000000010.00005912
Withdraw Locked ...28016962025-03-25 6:16:4929 days ago1742883409IN
0xB4a15199...F58a0C950
0 BERA0.000000090.000585
Withdraw Locked ...27999932025-03-25 5:21:1429 days ago1742880074IN
0xB4a15199...F58a0C950
0 BERA00.00000442
Withdraw Locked ...27966052025-03-25 3:30:4029 days ago1742873440IN
0xB4a15199...F58a0C950
0 BERA0.000000040.000175
Stake Locked27931722025-03-25 1:37:2429 days ago1742866644IN
0xB4a15199...F58a0C950
0 BERA0.000000130.000424
Withdraw Locked ...27925242025-03-25 1:15:5729 days ago1742865357IN
0xB4a15199...F58a0C950
0 BERA00.0000014
Withdraw Locked ...27914992025-03-25 0:42:0429 days ago1742863324IN
0xB4a15199...F58a0C950
0 BERA0.000000420.00168
Withdraw Locked ...27890622025-03-24 23:21:1129 days ago1742858471IN
0xB4a15199...F58a0C950
0 BERA00.00000647
Withdraw Locked ...27853412025-03-24 21:13:4329 days ago1742850823IN
0xB4a15199...F58a0C950
0 BERA0.000000030.00012598
View all transactions

Latest 1 internal transaction

Parent Transaction Hash Block From To
19858932025-03-06 15:53:4847 days ago1741276428  Contract Creation0 BERA
Loading...
Loading

Minimal Proxy Contract for 0xeb81a9eeaf156d4cfec2af364af36ad65cf9f0fa

Similar Match Source Code
This contract matches the deployed Bytecode of the Source Code for Contract 0x29AfC43f...e0BCAa015
The constructor portion of the code might be different and could alter the actual behaviour of the contract

Contract Name:
KodiakFarm

Compiler Version
v0.8.19+commit.7dd6d404

Optimization Enabled:
Yes with 100 runs

Other Settings:
paris EvmVersion

Contract Source Code (Solidity Standard Json-Input format)

File 1 of 14 : KodiakFarm.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity =0.8.19;

// *********************************************************************************************************
// @title Modified StakingRewards from Frax/Synthetix for Kodiak
// @author berastotle
// @notice Allows users to stake ERC20 tokens and earn token rewards, with a multiplier based on lock duration
// @dev    Modifications:
// Emergency withdrawal by user is possible if token rewards run out
// Ability to add new reward tokens after contract is deployed
// Ability to configure caps to the total stake in the farm
// Auto-set rewards to zero if they're not refilled by time of reward period renewal
// Remove configuration of rewardSymbols
// Require funding of farm before setting a rewardRate (soft check)
// Separate roles:
// rewardManager: can change reward rates by token,
// owner: can change farm settings, controlled by farm deployer
// *********************************************************************************************************

import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/utils/math/Math.sol";
import "@openzeppelin/contracts/utils/math/SafeMath.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "lib/v3-periphery/contracts/libraries/TransferHelper.sol";
import {ReentrancyGuard} from "lib/solady/src/utils/ReentrancyGuard.sol";
import {IFarmFactory} from "src/farms/interfaces/IFarmFactory.sol";
import {IERC20Metadata} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import {Multicallable} from "lib/solady/src/utils/Multicallable.sol";

contract KodiakFarm is Ownable, ReentrancyGuard, Multicallable {
    using SafeMath for uint256;
    using SafeERC20 for IERC20;

    /* ========== STATE VARIABLES ========== */
    // Effectively immutable
    IFarmFactory public factory;

    // Instances
    IERC20 public stakingToken;
    uint256 public stakingTokenCap; //Configurable maximum cap, default to uncapped

    // Constant for various precisions
    uint256 private constant MULTIPLIER_PRECISION = 1e18;

    // Time tracking
    uint256 public periodFinish;
    uint256 public lastUpdateTime;

    // Lock time and multiplier settings
    uint256 public lock_max_multiplier;
    uint256 public lock_time_for_max_multiplier;
    uint256 public lock_time_min;

    // Reward addresses, rates, and managers
    mapping(address => address) public rewardManagers; // token addr -> manager addr
    address[] public rewardTokens;
    uint256[] public rewardRates;
    mapping(address => uint256) public rewardTokenAddrToIdx; // token addr -> token index

    // Reward period
    uint256 public rewardsDuration;

    // Reward tracking
    uint256[] private rewardsPerTokenStored;
    mapping(address => mapping(uint256 => uint256)) private userRewardsPerTokenPaid; // staker addr -> token id -> paid amount
    mapping(address => mapping(uint256 => uint256)) private rewards; // staker addr -> token id -> reward amount
    mapping(address => uint256) private lastRewardClaimTime; // staker addr -> timestamp

    // Balance tracking
    uint256 private _total_liquidity_locked;
    uint256 private _total_combined_weight;
    mapping(address => uint256) private _locked_liquidity;
    mapping(address => uint256) private _combined_weights;

    // Stake tracking
    mapping(address => LockedStake[]) private lockedStakes;

    // Greylisting of bad addresses
    mapping(address => bool) public greylist;

    // Administrative booleans
    bool public stakesUnlocked; // Release locked stakes in case of emergency
    bool public rewardsCollectionPaused; // For emergencies
    bool public stakingPaused; // For emergencies

    /* ========== STRUCTS ========== */

    struct LockedStake {
        bytes32 kek_id;
        uint256 start_timestamp;
        uint256 liquidity;
        uint256 ending_timestamp;
        uint256 lock_multiplier; // 6 decimals of precision. 1x = 1000000
    }

    /* ========== MODIFIERS ========== */

    modifier onlyTknMgrs(address reward_token_address) {
        require(msg.sender == owner() || isTokenManagerFor(msg.sender, reward_token_address), "Farm: Not owner or tkn mgr");
        _;
    }

    modifier updateRewardAndBalance(address account, bool sync_too) {
        _updateRewardAndBalance(account, sync_too);
        _;
    }

    /* ========== INITIALIZER ========== */
    function initialize(
        address _owner,
        address _stakingToken,
        address[] memory _rewardTokens,
        address[] memory _rewardManagers,
        uint256[] memory _rewardRates,
        bytes calldata /*_data*/
    ) external nonReentrant {
        require(address(stakingToken) == address(0), "Farm: Already initialized");
        stakingToken = IERC20(_stakingToken);

        factory = IFarmFactory(msg.sender);

        require(_rewardTokens.length == _rewardManagers.length, "Farm: Array lengths do not match");
        require(_rewardTokens.length == _rewardRates.length, "Farm: Array lengths do not match");
        rewardTokens = _rewardTokens;
        rewardRates = _rewardRates;

        for (uint256 i = 0; i < _rewardTokens.length; i++) {
            if (i > 0) {
                require(rewardTokenAddrToIdx[_rewardTokens[i]] == 0 && _rewardTokens[i] != rewardTokens[0], "Token already added");
            }
            // For fast token address -> token ID lookups later
            rewardTokenAddrToIdx[_rewardTokens[i]] = i;
            // Initialize the stored rewards
            rewardsPerTokenStored.push(0);
            // Initialize the reward managers
            rewardManagers[_rewardTokens[i]] = _rewardManagers[i];
        }

        // Default settings, use ownerOnly setters to update
        stakingTokenCap = type(uint256).max; //default to uncapped
        rewardsDuration = 30 * 86400; // 30 * 86400  (30 days)
        lock_time_min = 0;
        lock_time_for_max_multiplier = 1 * 30 * 86400; // 30 days
        lock_max_multiplier = uint256(3e18); // E18. 1x = e18

        _transferOwnership(_owner); //Transfer ownership to deployer
    }

    //Call this to start the farm
    function startFarm() external onlyOwner {
        require(!_farmStarted(), "Farm: Already started");

        uint256 _rewardsDuration = rewardsDuration;
        address[] memory _rewardTokens = rewardTokens;
        uint256[] memory _rewardRates = rewardRates;

        for (uint256 i = 0; i < _rewardTokens.length; i++) {
            uint256 fundingNeeded = rewardFundingNeeded(_rewardTokens[i], _rewardRates[i]);
            if (fundingNeeded > 0) {
                TransferHelper.safeTransferFrom(_rewardTokens[i], msg.sender, address(this), fundingNeeded);
            }
        }

        lastUpdateTime = block.timestamp;
        periodFinish = block.timestamp.add(_rewardsDuration);

        emit FarmStarted();
    }

    /* ========== VIEWS ========== */
    function _farmStarted() private view returns (bool) {
        return lastUpdateTime != 0 && periodFinish != 0;
    }

    // Calculate how much more of the reward token needs to be funded before setting a reward rate
    // Note this is necessary but not sufficient condition, as we get the deficit using the balance, which includes unclaimed tokens
    function rewardFundingNeeded(address _rewardToken, uint256 _rate) public view returns (uint256) {
        uint256 balance = IERC20(_rewardToken).balanceOf(address(this));
        uint256 _rewardsDuration = rewardsDuration;
        uint256 timeToFund;
        if (!_farmStarted()) {
            timeToFund = _rewardsDuration;
        } else if (block.timestamp <= periodFinish) {
            uint256 remainingTime = periodFinish.sub(block.timestamp);
            timeToFund = remainingTime < rewardsDuration / 2 ? remainingTime.add(rewardsDuration) : remainingTime;
        } else if (block.timestamp > periodFinish) {
            uint256 num_periods_elapsed = uint256(block.timestamp.sub(periodFinish)) / rewardsDuration; // Floor division to the nearest period
            timeToFund = rewardsDuration.mul(num_periods_elapsed + 1);
        }

        uint256 amountNeeded = _rate.mul(timeToFund);
        return balance > amountNeeded ? 0 : amountNeeded.sub(balance);
    }

    // Total locked liquidity tokens
    function totalLiquidityLocked() external view returns (uint256) {
        return _total_liquidity_locked;
    }

    // Locked liquidity for a given account
    function lockedLiquidityOf(address account) external view returns (uint256) {
        return _locked_liquidity[account];
    }

    // Total 'balance' used for calculating the percent of the pool the account owns
    // Takes into account the locked stake time multiplier
    function totalCombinedWeight() external view returns (uint256) {
        return _total_combined_weight;
    }

    // Combined weight for a specific account
    function combinedWeightOf(address account) external view returns (uint256) {
        return _combined_weights[account];
    }

    // Calculated the combined weight for an account
    function calcCurCombinedWeight(address account) public view returns (uint256 old_combined_weight, uint256 new_combined_weight) {
        // Get the old combined weight
        old_combined_weight = _combined_weights[account];

        // Loop through the locked stakes, first by getting the liquidity * lock_multiplier portion
        new_combined_weight = 0;
        for (uint256 i = 0; i < lockedStakes[account].length; i++) {
            LockedStake memory thisStake = lockedStakes[account][i];
            uint256 lock_multiplier = thisStake.lock_multiplier;

            // Handles corner case where user never claims for a new stake
            // Don't want the multiplier going above the max
            uint256 accrue_start_time = Math.max(lastRewardClaimTime[account], thisStake.start_timestamp);

            // If the lock is expired
            if (thisStake.ending_timestamp <= block.timestamp) {
                // If the lock expired in the time since the last claim, the weight needs to be proportionately averaged this time
                if (lastRewardClaimTime[account] < thisStake.ending_timestamp) {
                    uint256 time_before_expiry = (thisStake.ending_timestamp).sub(accrue_start_time);
                    uint256 time_after_expiry = (block.timestamp).sub(thisStake.ending_timestamp);
                    uint256 time_sum = time_before_expiry.add(time_after_expiry);

                    if (time_sum == 0) {
                        // Multiplier is 1x if lock time is 0
                        lock_multiplier == MULTIPLIER_PRECISION;
                    } else {
                        // Get the weighted-average lock_multiplier
                        uint256 numerator = ((lock_multiplier).mul(time_before_expiry)).add(((MULTIPLIER_PRECISION).mul(time_after_expiry)));
                        lock_multiplier = numerator.div(time_sum);
                    }
                }
                // Otherwise, it needs to just be 1x
                else {
                    lock_multiplier = MULTIPLIER_PRECISION;
                }
            }

            // Sanity check: make sure it never goes above the initial multiplier
            if (lock_multiplier > thisStake.lock_multiplier) lock_multiplier = thisStake.lock_multiplier;

            uint256 liquidity = thisStake.liquidity;
            uint256 combined_boosted_amount = liquidity.mul(lock_multiplier).div(MULTIPLIER_PRECISION);
            new_combined_weight = new_combined_weight.add(combined_boosted_amount);
        }
    }

    // All the locked stakes for a given account
    function lockedStakesOf(address account) external view returns (LockedStake[] memory) {
        return lockedStakes[account];
    }

    // All the reward token symbols (if they exist)
    function getRewardSymbols() external view returns (string[] memory) {
        uint256 len = rewardTokens.length;
        string[] memory rewardSymbols = new string[](len);

        for (uint256 i = 0; i < len; i++) {
            try IERC20Metadata(rewardTokens[i]).symbol() returns (string memory symbol) {
                rewardSymbols[i] = symbol;
            } catch {
                rewardSymbols[i] = "";
            }
        }

        return rewardSymbols;
    }

    // All the reward tokens
    function getAllRewardTokens() external view returns (address[] memory) {
        return rewardTokens;
    }

    // All the reward rates
    function getAllRewardRates() external view returns (uint256[] memory) {
        return rewardRates;
    }

    // Multiplier amount, given the length of the lock
    function lockMultiplier(uint256 secs) public view returns (uint256) {
        uint256 lock_multiplier = uint256(MULTIPLIER_PRECISION).add(secs.mul(lock_max_multiplier.sub(MULTIPLIER_PRECISION)).div(lock_time_for_max_multiplier));
        if (lock_multiplier > lock_max_multiplier) lock_multiplier = lock_max_multiplier;
        return lock_multiplier;
    }

    // Last time the reward was applicable
    function lastTimeRewardApplicable() internal view returns (uint256) {
        return Math.min(block.timestamp, periodFinish);
    }

    // Amount of reward tokens per LP token
    function rewardsPerToken() public view returns (uint256[] memory newRewardsPerTokenStored) {
        if (_total_liquidity_locked == 0 || _total_combined_weight == 0) {
            return rewardsPerTokenStored;
        } else {
            newRewardsPerTokenStored = new uint256[](rewardTokens.length);
            for (uint256 i = 0; i < rewardsPerTokenStored.length; i++) {
                newRewardsPerTokenStored[i] = rewardsPerTokenStored[i].add(lastTimeRewardApplicable().sub(lastUpdateTime).mul(rewardRates[i]).mul(1e18).div(_total_combined_weight));
            }
            return newRewardsPerTokenStored;
        }
    }

    // Amount of reward tokens an account has earned / accrued
    // Note: In the edge-case of one of the account's stake expiring since the last claim, this will
    // return a slightly inflated number
    function earned(address account) public view returns (uint256[] memory new_earned) {
        uint256[] memory reward_arr = rewardsPerToken();
        new_earned = new uint256[](rewardTokens.length);

        if (_combined_weights[account] == 0) {
            for (uint256 i = 0; i < rewardTokens.length; i++) {
                new_earned[i] = 0;
            }
        } else {
            for (uint256 i = 0; i < rewardTokens.length; i++) {
                new_earned[i] = (_combined_weights[account]).mul(reward_arr[i].sub(userRewardsPerTokenPaid[account][i])).div(1e18).add(rewards[account][i]);
            }
        }
    }

    // Total reward tokens emitted in the given period
    function getRewardForDuration() external view returns (uint256[] memory rewards_per_duration_arr) {
        rewards_per_duration_arr = new uint256[](rewardRates.length);

        for (uint256 i = 0; i < rewardRates.length; i++) {
            rewards_per_duration_arr[i] = rewardRates[i].mul(rewardsDuration);
        }
    }

    // See if the caller_addr is a manager for the reward token
    function isTokenManagerFor(address caller_addr, address reward_token_addr) public view returns (bool) {
        if (caller_addr == owner()) return true; // Contract owner

        else if (rewardManagers[reward_token_addr] == caller_addr) return true; // Reward manager
        return false;
    }

    /* ========== MUTATIVE FUNCTIONS ========== */

    function _updateRewardAndBalance(address account, bool sync_too) internal {
        require(_farmStarted(), "Farm: not started yet");

        // Need to retro-adjust some things if the period hasn't been renewed, then start a new one
        if (sync_too) {
            sync();
        }

        if (account != address(0)) {
            // To keep the math correct, the user's combined weight must be recomputed
            (uint256 old_combined_weight, uint256 new_combined_weight) = calcCurCombinedWeight(account);

            // Calculate the earnings first
            _syncEarned(account);

            // Update the user's and the global combined weights
            if (new_combined_weight >= old_combined_weight) {
                uint256 weight_diff = new_combined_weight.sub(old_combined_weight);
                _total_combined_weight = _total_combined_weight.add(weight_diff);
                _combined_weights[account] = old_combined_weight.add(weight_diff);
            } else {
                uint256 weight_diff = old_combined_weight.sub(new_combined_weight);
                _total_combined_weight = _total_combined_weight.sub(weight_diff);
                _combined_weights[account] = old_combined_weight.sub(weight_diff);
            }
        }
    }

    function _syncEarned(address account) internal {
        if (account != address(0)) {
            // Calculate the earnings
            uint256[] memory earned_arr = earned(account);

            // Update the rewards array
            for (uint256 i = 0; i < earned_arr.length; i++) {
                rewards[account][i] = earned_arr[i];
            }

            // Update the rewards paid array
            for (uint256 i = 0; i < earned_arr.length; i++) {
                userRewardsPerTokenPaid[account][i] = rewardsPerTokenStored[i];
            }
        }
    }

    function stakeLocked(uint256 liquidity, uint256 secs) public nonReentrant {
        _stakeLocked(msg.sender, liquidity, secs, block.timestamp);
    }

    function _stakeLocked(address user, uint256 liquidity, uint256 secs, uint256 start_timestamp) internal updateRewardAndBalance(user, true) {
        require(!stakingPaused, "Staking paused");
        require(liquidity > 0, "Must stake more than zero");
        require(_total_liquidity_locked.add(liquidity) <= stakingTokenCap, "Farm cap exceeded");
        require(!greylist[user], "Address has been greylisted");
        require(secs >= lock_time_min, "Minimum stake time not met");
        require(secs <= lock_time_for_max_multiplier, "Trying to lock for too long");

        uint256 lock_multiplier = lockMultiplier(secs);
        bytes32 kek_id = keccak256(abi.encodePacked(user, start_timestamp, liquidity, _locked_liquidity[user]));
        lockedStakes[user].push(LockedStake(kek_id, start_timestamp, liquidity, start_timestamp.add(secs), lock_multiplier));

        // Pull tokens from the user
        TransferHelper.safeTransferFrom(address(stakingToken), user, address(this), liquidity);

        // Update liquidities
        _total_liquidity_locked = _total_liquidity_locked.add(liquidity);
        _locked_liquidity[user] = _locked_liquidity[user].add(liquidity);

        // Need to call to update the combined weights
        _updateRewardAndBalance(user, false);

        // Needed for edge case if the staker only claims once, and after the lock expired
        if (lastRewardClaimTime[user] == 0) lastRewardClaimTime[user] = block.timestamp;

        emit StakeLocked(user, liquidity, secs, kek_id);
    }

    // Two different withdrawLocked functions are needed because of delegateCall and msg.sender issues
    function withdrawLocked(bytes32 kek_id) public nonReentrant {
        _withdrawLocked(msg.sender, kek_id, true);
    }

    function withdrawLockedMultiple(bytes32[] memory kek_ids) public nonReentrant {
        _getReward(msg.sender);
        for (uint256 i = 0; i < kek_ids.length; i++) {
            _withdrawLocked(msg.sender, kek_ids[i], false); //don't collect rewards each iteration
        }
    }

    function withdrawLockedAll() public nonReentrant {
        _getReward(msg.sender);
        LockedStake[] memory locks = lockedStakes[msg.sender];
        for (uint256 i = 0; i < locks.length; i++) {
            if (locks[i].liquidity > 0 && block.timestamp >= locks[i].ending_timestamp) {
                _withdrawLocked(msg.sender, locks[i].kek_id, false);
            }
        }
    }

    //Emergency withdraw forgoes rewards
    function emergencyWithdraw(bytes32 kek_id) public nonReentrant {
        _withdrawLocked(msg.sender, kek_id, false);
    }

    function _withdrawLocked(address user, bytes32 kek_id, bool collectRewards) internal {
        // Collect rewards first and then update the balances
        if (collectRewards) {
            _getReward(user);
        }

        LockedStake memory thisStake;
        thisStake.liquidity = 0;
        uint256 theArrayIndex;
        uint256 stakesLength = lockedStakes[user].length;

        for (uint256 i = 0; i < stakesLength; i++) {
            if (kek_id == lockedStakes[user][i].kek_id) {
                thisStake = lockedStakes[user][i];
                theArrayIndex = i;
                break;
            }
        }
        require(thisStake.kek_id == kek_id, "Stake not found");
        require(block.timestamp >= thisStake.ending_timestamp || stakesUnlocked == true, "Stake is still locked!");

        uint256 liquidity = thisStake.liquidity;

        if (liquidity > 0) {
            // Update liquidities
            _total_liquidity_locked = _total_liquidity_locked.sub(liquidity);
            _locked_liquidity[user] = _locked_liquidity[user].sub(liquidity);

            // Remove the stake from the array
            // Step 1: If it's not the last element, copy the last element to the index where you want to remove an element
            if (theArrayIndex < stakesLength - 1) {
                lockedStakes[user][theArrayIndex] = lockedStakes[user][stakesLength - 1];
            }

            // Step 2: Remove the last element (pop the array)
            lockedStakes[user].pop();

            // Need to call to update the combined weights
            _updateRewardAndBalance(user, false);

            // Give the tokens to the destination_address
            // Should throw if insufficient balance
            TransferHelper.safeTransfer(address(stakingToken), user, liquidity);

            emit WithdrawLocked(user, liquidity, kek_id);
        }
    }

    // Two different getReward functions are needed because of delegateCall and msg.sender issues
    function getReward() external nonReentrant returns (uint256[] memory) {
        require(!rewardsCollectionPaused, "Rewards collection paused");
        return _getReward(msg.sender);
    }

    // No withdrawer == msg.sender check needed since this is only internally callable
    function _getReward(address user) internal updateRewardAndBalance(user, true) returns (uint256[] memory rewards_before) {
        require(!rewardsCollectionPaused, "Farm: Rewards emergency paused, use emergencyWithdraw if necessary");

        // Update the rewards array and distribute rewards
        rewards_before = new uint256[](rewardTokens.length);

        for (uint256 i = 0; i < rewardTokens.length; i++) {
            rewards_before[i] = rewards[user][i];
            if (rewards_before[i] > 0) {
                rewards[user][i] = 0;
                TransferHelper.safeTransfer(rewardTokens[i], user, rewards_before[i]);
                emit RewardPaid(user, rewards_before[i], rewardTokens[i]);
            }
        }

        lastRewardClaimTime[user] = block.timestamp;
    }

    // If the period expired, renew it
    function _retroCatchUp() internal {
        // Ensure the provided reward amount is not more than the balance in the contract.
        // This keeps the reward rate in the right range, preventing overflows due to
        // very high values of rewardRate in the earned and rewardsPerToken functions;
        // Reward + leftover must be less than 2^256 / 10^18 to avoid overflow.
        uint256 num_periods_elapsed = uint256(block.timestamp.sub(periodFinish)) / rewardsDuration; // Floor division to the nearest period

        // Make sure there are enough tokens to renew the reward period
        for (uint256 i = 0; i < rewardTokens.length; i++) {
            bool haveTokensToRenew = rewardRates[i].mul(rewardsDuration).mul(num_periods_elapsed + 1) <= IERC20(rewardTokens[i]).balanceOf(address(this));
            if (!haveTokensToRenew) {
                // if there aren't enough tokens to renew the reward period, zero out the rewardRate
                rewardRates[i] = 0;
                emit RewardRateUpdated(rewardTokens[i], 0);
            }
        }

        periodFinish = periodFinish.add((num_periods_elapsed.add(1)).mul(rewardsDuration));

        _updateStoredRewardsAndTime();

        emit RewardsPeriodRenewed(address(stakingToken));
    }

    function _updateStoredRewardsAndTime() internal {
        // Get the rewards
        uint256[] memory rewards_per_token = rewardsPerToken();

        // Update the rewardsPerTokenStored
        for (uint256 i = 0; i < rewardsPerTokenStored.length; i++) {
            rewardsPerTokenStored[i] = rewards_per_token[i];
        }

        // Update the last stored time
        lastUpdateTime = lastTimeRewardApplicable();
    }

    function sync() public {
        require(_farmStarted(), "Farm: not started yet");
        if (block.timestamp >= periodFinish) {
            _retroCatchUp();
        } else {
            _updateStoredRewardsAndTime();
        }
    }

    /* ========== RESTRICTED FUNCTIONS ========== */

    // Added to support recovering LP Rewards and other mistaken tokens from other systems to be distributed to holders
    function recoverERC20(address tokenAddress, uint256 tokenAmount) external onlyTknMgrs(tokenAddress) {
        // Cannot rug the staking / LP tokens
        require(tokenAddress != address(stakingToken), "Cannot rug staking / LP tokens");

        // Check if the desired token is a reward token
        bool isRewardToken = false;
        for (uint256 i = 0; i < rewardTokens.length; i++) {
            if (rewardTokens[i] == tokenAddress) {
                isRewardToken = true;
                break;
            }
        }

        // Only the reward managers can take back their reward tokens
        // Note: this resets rewardRate to zero, must set using setRewardRate
        if (isRewardToken && rewardManagers[tokenAddress] == msg.sender) {
            rewardRates[rewardTokenAddrToIdx[tokenAddress]] = 0;
            TransferHelper.safeTransfer(tokenAddress, msg.sender, tokenAmount);
            emit Recovered(msg.sender, tokenAddress, tokenAmount);
            emit RewardRateUpdated(tokenAddress, 0);
            return;
        }
        // Other tokens, like airdrops or accidental deposits, can be withdrawn by the owner
        else if (!isRewardToken && (msg.sender == owner())) {
            TransferHelper.safeTransfer(tokenAddress, msg.sender, tokenAmount);
            emit Recovered(msg.sender, tokenAddress, tokenAmount);
            return;
        }
        // If none of the above conditions are true
        else {
            revert("No valid tokens to recover");
        }
    }

    function setRewardsDuration(uint256 _rewardsDuration) external onlyOwner {
        require(_rewardsDuration >= 86400, "Rewards duration too short");
        require(periodFinish == 0 || block.timestamp > periodFinish, "Reward period incomplete");
        rewardsDuration = _rewardsDuration;
        emit RewardsDurationUpdated(rewardsDuration);
    }

    function setMultipliers(uint256 _lock_max_multiplier) external onlyOwner {
        require(_lock_max_multiplier >= uint256(1e18), "Multiplier must be greater than or equal to 1e18");
        lock_max_multiplier = _lock_max_multiplier;
        emit LockedStakeMaxMultiplierUpdated(lock_max_multiplier);
    }

    function setLockedStakeTimeForMinAndMaxMultiplier(uint256 _lock_time_for_max_multiplier, uint256 _lock_time_min) external onlyOwner {
        require(_lock_time_for_max_multiplier >= 1, "Mul max time must be >= 1");
        require(_lock_time_for_max_multiplier >= _lock_time_min, "Mul max time must be >= min time");

        lock_time_for_max_multiplier = _lock_time_for_max_multiplier;
        lock_time_min = _lock_time_min;

        emit LockedStakeTimeForMaxMultiplier(lock_time_for_max_multiplier);
        emit LockedStakeMinTime(_lock_time_min);
    }

    function setGreylist(address _address, bool _status) external onlyOwner {
        greylist[_address] = _status;
        emit GreylistSet(_address, _status);
    }

    function setStakesUnlocked(bool _status) external onlyOwner {
        stakesUnlocked = _status;
        emit StakesUnlockedSet(_status);
    }

    function setStakingPaused(bool _status) external onlyOwner {
        stakingPaused = _status;
        emit StakingPausedSet(_status);
    }

    function setRewardsCollectionPaused(bool _status) external onlyOwner {
        rewardsCollectionPaused = _status;
        emit RewardsCollectionPausedSet(_status);
    }

    // The owner or the reward token managers can set reward rates
    function setRewardRate(address _rewardToken, uint256 _rewardRate, bool sync_too) external onlyTknMgrs(_rewardToken) {
        uint256 i = rewardTokenAddrToIdx[_rewardToken];
        uint256 old_rate = rewardRates[i];
        if (_rewardRate > old_rate && _farmStarted()) {
            uint256 fundingNeeded = rewardFundingNeeded(_rewardToken, _rewardRate);
            if (fundingNeeded > 0) {
                TransferHelper.safeTransferFrom(_rewardToken, msg.sender, address(this), fundingNeeded);
            }
        }

        rewardRates[i] = _rewardRate;

        if (sync_too) {
            sync();
        }

        emit RewardRateUpdated(_rewardToken, _rewardRate);
    }

    // The owner or the reward token managers can change managers
    function changeTokenManager(address reward_token_address, address new_manager_address) external onlyTknMgrs(reward_token_address) {
        rewardManagers[reward_token_address] = new_manager_address;
        emit RewardManagerSet(reward_token_address, new_manager_address);
    }

    function addNewRewardToken(address _rewardToken, address _rewardManager, uint256 _rewardRate) external onlyOwner {
        require(_rewardToken != address(0), "Zero address detected");
        require(rewardTokenAddrToIdx[_rewardToken] == 0 && _rewardToken != rewardTokens[0], "Token already added");

        if (_farmStarted()) {
            sync();
            uint256 fundingNeeded = rewardFundingNeeded(_rewardToken, _rewardRate);
            if (fundingNeeded > 0) {
                TransferHelper.safeTransferFrom(_rewardToken, msg.sender, address(this), fundingNeeded);
            }
        }

        rewardTokens.push(_rewardToken);
        rewardRates.push(_rewardRate);

        rewardTokenAddrToIdx[_rewardToken] = rewardTokens.length - 1;
        rewardsPerTokenStored.push(0);
        rewardManagers[_rewardToken] = _rewardManager;

        emit RewardTokenAdded(_rewardToken);
    }

    function setStakingTokenCap(uint256 _stakingTokenCap) external onlyOwner {
        stakingTokenCap = _stakingTokenCap;
        emit StakingTokenCapUpdated(_stakingTokenCap);
    }

    /* ========== EVENTS ========== */

    event StakeLocked(address indexed user, uint256 amount, uint256 secs, bytes32 kek_id);
    event WithdrawLocked(address indexed user, uint256 amount, bytes32 kek_id);
    event RewardPaid(address indexed user, uint256 reward, address indexed token_address);
    event RewardsDurationUpdated(uint256 newDuration);
    event RewardRateUpdated(address indexed token, uint256 newRate);
    event RewardManagerSet(address indexed token, address newManager);
    event Recovered(address indexed destination_address, address indexed token, uint256 amount);
    event RewardsPeriodRenewed(address indexed token);
    event LockedStakeMaxMultiplierUpdated(uint256 multiplier);
    event LockedStakeTimeForMaxMultiplier(uint256 secs);
    event LockedStakeMinTime(uint256 secs);
    event RewardTokenAdded(address rewardToken);
    event StakingTokenCapUpdated(uint256 stakingTokenCap);
    event StakingPausedSet(bool _status);
    event RewardsCollectionPausedSet(bool _status);
    event StakesUnlockedSet(bool _status);
    event GreylistSet(address indexed _address, bool _status);
    event FarmStarted();
}

File 2 of 14 : Ownable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)

pragma solidity ^0.8.0;

import "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    constructor() {
        _transferOwnership(_msgSender());
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

File 3 of 14 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1, "Math: mulDiv overflow");

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // ? `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // ? `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
        }
    }
}

File 4 of 14 : SafeMath.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/SafeMath.sol)

pragma solidity ^0.8.0;

// CAUTION
// This version of SafeMath should only be used with Solidity 0.8 or later,
// because it relies on the compiler's built in overflow checks.

/**
 * @dev Wrappers over Solidity's arithmetic operations.
 *
 * NOTE: `SafeMath` is generally not needed starting with Solidity 0.8, since the compiler
 * now has built in overflow checking.
 */
library SafeMath {
    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     *
     * _Available since v3.4._
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     *
     * _Available since v3.4._
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the addition of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `+` operator.
     *
     * Requirements:
     *
     * - Addition cannot overflow.
     */
    function add(uint256 a, uint256 b) internal pure returns (uint256) {
        return a + b;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        return a - b;
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `*` operator.
     *
     * Requirements:
     *
     * - Multiplication cannot overflow.
     */
    function mul(uint256 a, uint256 b) internal pure returns (uint256) {
        return a * b;
    }

    /**
     * @dev Returns the integer division of two unsigned integers, reverting on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator.
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b) internal pure returns (uint256) {
        return a / b;
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * reverting when dividing by zero.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b) internal pure returns (uint256) {
        return a % b;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
     * overflow (when the result is negative).
     *
     * CAUTION: This function is deprecated because it requires allocating memory for the error
     * message unnecessarily. For custom revert reasons use {trySub}.
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        unchecked {
            require(b <= a, errorMessage);
            return a - b;
        }
    }

    /**
     * @dev Returns the integer division of two unsigned integers, reverting with custom message on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        unchecked {
            require(b > 0, errorMessage);
            return a / b;
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * reverting with custom message when dividing by zero.
     *
     * CAUTION: This function is deprecated because it requires allocating memory for the error
     * message unnecessarily. For custom revert reasons use {tryMod}.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        unchecked {
            require(b > 0, errorMessage);
            return a % b;
        }
    }
}

File 5 of 14 : SafeERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.3) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.0;

import "../IERC20.sol";
import "../extensions/IERC20Permit.sol";
import "../../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using Address for address;

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
    }

    /**
     * @dev Deprecated. This function has issues similar to the ones found in
     * {IERC20-approve}, and its usage is discouraged.
     *
     * Whenever possible, use {safeIncreaseAllowance} and
     * {safeDecreaseAllowance} instead.
     */
    function safeApprove(IERC20 token, address spender, uint256 value) internal {
        // safeApprove should only be called when setting an initial allowance,
        // or when resetting it to zero. To increase and decrease it, use
        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
        require(
            (value == 0) || (token.allowance(address(this), spender) == 0),
            "SafeERC20: approve from non-zero to non-zero allowance"
        );
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        unchecked {
            uint256 oldAllowance = token.allowance(address(this), spender);
            require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
     * Revert on invalid signature.
     */
    function safePermit(
        IERC20Permit token,
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal {
        uint256 nonceBefore = token.nonces(owner);
        token.permit(owner, spender, value, deadline, v, r, s);
        uint256 nonceAfter = token.nonces(owner);
        require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
        require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
        // and not revert is the subcall reverts.

        (bool success, bytes memory returndata) = address(token).call(data);
        return
            success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token));
    }
}

File 6 of 14 : TransferHelper.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.6.0;

import '@openzeppelin/contracts/token/ERC20/IERC20.sol';

library TransferHelper {
    /// @notice Transfers tokens from the targeted address to the given destination
    /// @notice Errors with 'STF' if transfer fails
    /// @param token The contract address of the token to be transferred
    /// @param from The originating address from which the tokens will be transferred
    /// @param to The destination address of the transfer
    /// @param value The amount to be transferred
    function safeTransferFrom(
        address token,
        address from,
        address to,
        uint256 value
    ) internal {
        (bool success, bytes memory data) =
            token.call(abi.encodeWithSelector(IERC20.transferFrom.selector, from, to, value));
        require(success && (data.length == 0 || abi.decode(data, (bool))), 'STF');
    }

    /// @notice Transfers tokens from msg.sender to a recipient
    /// @dev Errors with ST if transfer fails
    /// @param token The contract address of the token which will be transferred
    /// @param to The recipient of the transfer
    /// @param value The value of the transfer
    function safeTransfer(
        address token,
        address to,
        uint256 value
    ) internal {
        (bool success, bytes memory data) = token.call(abi.encodeWithSelector(IERC20.transfer.selector, to, value));
        require(success && (data.length == 0 || abi.decode(data, (bool))), 'ST');
    }

    /// @notice Approves the stipulated contract to spend the given allowance in the given token
    /// @dev Errors with 'SA' if transfer fails
    /// @param token The contract address of the token to be approved
    /// @param to The target of the approval
    /// @param value The amount of the given token the target will be allowed to spend
    function safeApprove(
        address token,
        address to,
        uint256 value
    ) internal {
        (bool success, bytes memory data) = token.call(abi.encodeWithSelector(IERC20.approve.selector, to, value));
        require(success && (data.length == 0 || abi.decode(data, (bool))), 'SA');
    }

    /// @notice Transfers ETH to the recipient address
    /// @dev Fails with `STE`
    /// @param to The destination of the transfer
    /// @param value The value to be transferred
    function safeTransferETH(address to, uint256 value) internal {
        (bool success, ) = to.call{value: value}(new bytes(0));
        require(success, 'STE');
    }
}

File 7 of 14 : ReentrancyGuard.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Reentrancy guard mixin.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/ReentrancyGuard.sol)
abstract contract ReentrancyGuard {
    /*´:°•.°+.*•´.*:°.°*.°•´.°:°•.°•.*•´.*:°.°*.°•´.°:°•.°+.*•´.*:*/
    /*                       CUSTOM ERRORS                        */
    /*.•°:°.´+°.*°.°:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•°°.*°.°:*.´+°.•*/

    /// @dev Unauthorized reentrant call.
    error Reentrancy();

    /*´:°•.°+.*•´.*:°.°*.°•´.°:°•.°•.*•´.*:°.°*.°•´.°:°•.°+.*•´.*:*/
    /*                          STORAGE                           */
    /*.•°:°.´+°.*°.°:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•°°.*°.°:*.´+°.•*/

    /// @dev Equivalent to: `uint72(bytes9(keccak256("_REENTRANCY_GUARD_SLOT")))`.
    /// 9 bytes is large enough to avoid collisions with lower slots,
    /// but not too large to result in excessive bytecode bloat.
    uint256 private constant _REENTRANCY_GUARD_SLOT = 0x929eee149b4bd21268;

    /*´:°•.°+.*•´.*:°.°*.°•´.°:°•.°•.*•´.*:°.°*.°•´.°:°•.°+.*•´.*:*/
    /*                      REENTRANCY GUARD                      */
    /*.•°:°.´+°.*°.°:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•°°.*°.°:*.´+°.•*/

    /// @dev Guards a function from reentrancy.
    modifier nonReentrant() virtual {
        /// @solidity memory-safe-assembly
        assembly {
            if eq(sload(_REENTRANCY_GUARD_SLOT), address()) {
                mstore(0x00, 0xab143c06) // `Reentrancy()`.
                revert(0x1c, 0x04)
            }
            sstore(_REENTRANCY_GUARD_SLOT, address())
        }
        _;
        /// @solidity memory-safe-assembly
        assembly {
            sstore(_REENTRANCY_GUARD_SLOT, codesize())
        }
    }

    /// @dev Guards a view function from read-only reentrancy.
    modifier nonReadReentrant() virtual {
        /// @solidity memory-safe-assembly
        assembly {
            if eq(sload(_REENTRANCY_GUARD_SLOT), address()) {
                mstore(0x00, 0xab143c06) // `Reentrancy()`.
                revert(0x1c, 0x04)
            }
        }
        _;
    }
}

File 8 of 14 : IFarmFactory.sol
// SPDX-License-Identifier: MIT
pragma solidity =0.8.19;

interface IFarmFactory {

    function owner() external view returns (address);
}

File 9 of 14 : IERC20Metadata.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.0;

import "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC20 standard.
 *
 * _Available since v4.1._
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

File 10 of 14 : Multicallable.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Contract that enables a single call to call multiple methods on itself.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/Multicallable.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/Multicallable.sol)
///
/// WARNING:
/// This implementation is NOT to be used with ERC2771 out-of-the-box.
/// https://blog.openzeppelin.com/arbitrary-address-spoofing-vulnerability-erc2771context-multicall-public-disclosure
/// This also applies to potentially other ERCs / patterns appending to the back of calldata.
///
/// We do NOT have a check for ERC2771, as we do not inherit from OpenZeppelin's context.
/// Moreover, it is infeasible and inefficient for us to add checks and mitigations
/// for all possible ERC / patterns appending to the back of calldata.
///
/// We would highly recommend using an alternative pattern such as
/// https://github.com/Vectorized/multicaller
/// which is more flexible, futureproof, and safer by default.
abstract contract Multicallable {
    /// @dev Apply `delegatecall` with the current contract to each calldata in `data`,
    /// and store the `abi.encode` formatted results of each `delegatecall` into `results`.
    /// If any of the `delegatecall`s reverts, the entire context is reverted,
    /// and the error is bubbled up.
    ///
    /// By default, this function directly returns the results and terminates the call context.
    /// If you need to add before and after actions to the multicall, please override this function.
    function multicall(bytes[] calldata data) public payable virtual returns (bytes[] memory) {
        // Revert if `msg.value` is non-zero by default to guard against double-spending.
        // (See: https://www.paradigm.xyz/2021/08/two-rights-might-make-a-wrong)
        //
        // If you really need to pass in a `msg.value`, then you will have to
        // override this function and add in any relevant before and after checks.
        if (msg.value != 0) revert();
        // `_multicallDirectReturn` returns the results directly and terminates the call context.
        _multicallDirectReturn(_multicall(data));
    }

    /// @dev The inner logic of `multicall`.
    /// This function is included so that you can override `multicall`
    /// to add before and after actions, and use the `_multicallDirectReturn` function.
    function _multicall(bytes[] calldata data) internal virtual returns (bytes32 results) {
        /// @solidity memory-safe-assembly
        assembly {
            results := mload(0x40)
            mstore(results, 0x20)
            mstore(add(0x20, results), data.length)
            let c := add(0x40, results)
            let s := c
            let end := shl(5, data.length)
            calldatacopy(c, data.offset, end)
            end := add(c, end)
            let m := end
            if data.length {
                for {} 1 {} {
                    let o := add(data.offset, mload(c))
                    calldatacopy(m, add(o, 0x20), calldataload(o))
                    // forgefmt: disable-next-item
                    if iszero(delegatecall(gas(), address(), m, calldataload(o), codesize(), 0x00)) {
                        // Bubble up the revert if the delegatecall reverts.
                        returndatacopy(results, 0x00, returndatasize())
                        revert(results, returndatasize())
                    }
                    mstore(c, sub(m, s))
                    c := add(0x20, c)
                    // Append the `returndatasize()`, and the return data.
                    mstore(m, returndatasize())
                    let b := add(m, 0x20)
                    returndatacopy(b, 0x00, returndatasize())
                    // Advance `m` by `returndatasize() + 0x20`,
                    // rounded up to the next multiple of 32.
                    m := and(add(add(b, returndatasize()), 0x1f), 0xffffffffffffffe0)
                    mstore(add(b, returndatasize()), 0) // Zeroize the slot after the returndata.
                    if iszero(lt(c, end)) { break }
                }
            }
            mstore(0x40, m) // Allocate memory.
            results := or(shl(64, m), results) // Pack the bytes length into `results`.
        }
    }

    /// @dev Decodes the `results` into an array of bytes.
    /// This can be useful if you need to access the results or re-encode it.
    function _multicallResultsToBytesArray(bytes32 results)
        internal
        pure
        virtual
        returns (bytes[] memory decoded)
    {
        /// @solidity memory-safe-assembly
        assembly {
            decoded := mload(0x40)
            let c := and(0xffffffffffffffff, results) // Extract the offset.
            mstore(decoded, mload(add(c, 0x20))) // Store the length.
            let o := add(decoded, 0x20) // Start of elements in `decoded`.
            let end := add(o, shl(5, mload(decoded)))
            mstore(0x40, end) // Allocate memory.
            let s := add(c, 0x40) // Start of elements in `results`.
            let d := sub(s, o) // Difference between input and output pointers.
            for {} iszero(eq(o, end)) { o := add(o, 0x20) } { mstore(o, add(mload(add(d, o)), s)) }
        }
    }

    /// @dev Directly returns the `results` and terminates the current call context.
    /// `results` must be from `_multicall`, else behavior is undefined.
    function _multicallDirectReturn(bytes32 results) internal pure virtual {
        /// @solidity memory-safe-assembly
        assembly {
            return(and(0xffffffffffffffff, results), shr(64, results))
        }
    }
}

File 11 of 14 : Context.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (utils/Context.sol)

pragma solidity ^0.8.0;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

File 12 of 14 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 amount) external returns (bool);
}

File 13 of 14 : IERC20Permit.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * ==== Security Considerations
 *
 * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
 * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
 * considered as an intention to spend the allowance in any specific way. The second is that because permits have
 * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
 * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
 * generally recommended is:
 *
 * ```solidity
 * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
 *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
 *     doThing(..., value);
 * }
 *
 * function doThing(..., uint256 value) public {
 *     token.safeTransferFrom(msg.sender, address(this), value);
 *     ...
 * }
 * ```
 *
 * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
 * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
 * {SafeERC20-safeTransferFrom}).
 *
 * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
 * contracts should have entry points that don't rely on permit.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     *
     * CAUTION: See Security Considerations above.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

File 14 of 14 : Address.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     *
     * Furthermore, `isContract` will also return true if the target contract within
     * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
     * which only has an effect at the end of a transaction.
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
     * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
     *
     * _Available since v4.8._
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        if (success) {
            if (returndata.length == 0) {
                // only check isContract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                require(isContract(target), "Address: call to non-contract");
            }
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason or using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    function _revert(bytes memory returndata, string memory errorMessage) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert(errorMessage);
        }
    }
}

Settings
{
  "remappings": [
    "forge-std/=lib/forge-std/src/",
    "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 100
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "ipfs",
    "appendCBOR": true
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "paris",
  "viaIR": false,
  "libraries": {}
}

Contract ABI

API
[{"inputs":[],"name":"Reentrancy","type":"error"},{"anonymous":false,"inputs":[],"name":"FarmStarted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"_address","type":"address"},{"indexed":false,"internalType":"bool","name":"_status","type":"bool"}],"name":"GreylistSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"multiplier","type":"uint256"}],"name":"LockedStakeMaxMultiplierUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"secs","type":"uint256"}],"name":"LockedStakeMinTime","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"secs","type":"uint256"}],"name":"LockedStakeTimeForMaxMultiplier","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"destination_address","type":"address"},{"indexed":true,"internalType":"address","name":"token","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Recovered","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"token","type":"address"},{"indexed":false,"internalType":"address","name":"newManager","type":"address"}],"name":"RewardManagerSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"reward","type":"uint256"},{"indexed":true,"internalType":"address","name":"token_address","type":"address"}],"name":"RewardPaid","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"token","type":"address"},{"indexed":false,"internalType":"uint256","name":"newRate","type":"uint256"}],"name":"RewardRateUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"rewardToken","type":"address"}],"name":"RewardTokenAdded","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bool","name":"_status","type":"bool"}],"name":"RewardsCollectionPausedSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"newDuration","type":"uint256"}],"name":"RewardsDurationUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"token","type":"address"}],"name":"RewardsPeriodRenewed","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"secs","type":"uint256"},{"indexed":false,"internalType":"bytes32","name":"kek_id","type":"bytes32"}],"name":"StakeLocked","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bool","name":"_status","type":"bool"}],"name":"StakesUnlockedSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bool","name":"_status","type":"bool"}],"name":"StakingPausedSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"stakingTokenCap","type":"uint256"}],"name":"StakingTokenCapUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"bytes32","name":"kek_id","type":"bytes32"}],"name":"WithdrawLocked","type":"event"},{"inputs":[{"internalType":"address","name":"_rewardToken","type":"address"},{"internalType":"address","name":"_rewardManager","type":"address"},{"internalType":"uint256","name":"_rewardRate","type":"uint256"}],"name":"addNewRewardToken","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"calcCurCombinedWeight","outputs":[{"internalType":"uint256","name":"old_combined_weight","type":"uint256"},{"internalType":"uint256","name":"new_combined_weight","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"reward_token_address","type":"address"},{"internalType":"address","name":"new_manager_address","type":"address"}],"name":"changeTokenManager","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"combinedWeightOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"earned","outputs":[{"internalType":"uint256[]","name":"new_earned","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"kek_id","type":"bytes32"}],"name":"emergencyWithdraw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"factory","outputs":[{"internalType":"contract IFarmFactory","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getAllRewardRates","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getAllRewardTokens","outputs":[{"internalType":"address[]","name":"","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getReward","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"getRewardForDuration","outputs":[{"internalType":"uint256[]","name":"rewards_per_duration_arr","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getRewardSymbols","outputs":[{"internalType":"string[]","name":"","type":"string[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"greylist","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_owner","type":"address"},{"internalType":"address","name":"_stakingToken","type":"address"},{"internalType":"address[]","name":"_rewardTokens","type":"address[]"},{"internalType":"address[]","name":"_rewardManagers","type":"address[]"},{"internalType":"uint256[]","name":"_rewardRates","type":"uint256[]"},{"internalType":"bytes","name":"","type":"bytes"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"caller_addr","type":"address"},{"internalType":"address","name":"reward_token_addr","type":"address"}],"name":"isTokenManagerFor","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lastUpdateTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"secs","type":"uint256"}],"name":"lockMultiplier","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lock_max_multiplier","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lock_time_for_max_multiplier","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lock_time_min","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"lockedLiquidityOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"lockedStakesOf","outputs":[{"components":[{"internalType":"bytes32","name":"kek_id","type":"bytes32"},{"internalType":"uint256","name":"start_timestamp","type":"uint256"},{"internalType":"uint256","name":"liquidity","type":"uint256"},{"internalType":"uint256","name":"ending_timestamp","type":"uint256"},{"internalType":"uint256","name":"lock_multiplier","type":"uint256"}],"internalType":"struct KodiakFarm.LockedStake[]","name":"","type":"tuple[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes[]","name":"data","type":"bytes[]"}],"name":"multicall","outputs":[{"internalType":"bytes[]","name":"","type":"bytes[]"}],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"periodFinish","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"tokenAddress","type":"address"},{"internalType":"uint256","name":"tokenAmount","type":"uint256"}],"name":"recoverERC20","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_rewardToken","type":"address"},{"internalType":"uint256","name":"_rate","type":"uint256"}],"name":"rewardFundingNeeded","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"rewardManagers","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"rewardRates","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"rewardTokenAddrToIdx","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"rewardTokens","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"rewardsCollectionPaused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"rewardsDuration","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"rewardsPerToken","outputs":[{"internalType":"uint256[]","name":"newRewardsPerTokenStored","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_address","type":"address"},{"internalType":"bool","name":"_status","type":"bool"}],"name":"setGreylist","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_lock_time_for_max_multiplier","type":"uint256"},{"internalType":"uint256","name":"_lock_time_min","type":"uint256"}],"name":"setLockedStakeTimeForMinAndMaxMultiplier","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_lock_max_multiplier","type":"uint256"}],"name":"setMultipliers","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_rewardToken","type":"address"},{"internalType":"uint256","name":"_rewardRate","type":"uint256"},{"internalType":"bool","name":"sync_too","type":"bool"}],"name":"setRewardRate","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bool","name":"_status","type":"bool"}],"name":"setRewardsCollectionPaused","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_rewardsDuration","type":"uint256"}],"name":"setRewardsDuration","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bool","name":"_status","type":"bool"}],"name":"setStakesUnlocked","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bool","name":"_status","type":"bool"}],"name":"setStakingPaused","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_stakingTokenCap","type":"uint256"}],"name":"setStakingTokenCap","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"liquidity","type":"uint256"},{"internalType":"uint256","name":"secs","type":"uint256"}],"name":"stakeLocked","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"stakesUnlocked","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"stakingPaused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"stakingToken","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"stakingTokenCap","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"startFarm","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"sync","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"totalCombinedWeight","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalLiquidityLocked","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"kek_id","type":"bytes32"}],"name":"withdrawLocked","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"withdrawLockedAll","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32[]","name":"kek_ids","type":"bytes32[]"}],"name":"withdrawLockedMultiple","outputs":[],"stateMutability":"nonpayable","type":"function"}]

Block Transaction Gas Used Reward
view all blocks produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.